Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The osteo-odonto-kerato-prosthesis (OOKP) procedure is a complex, multi-stage, multidisciplinary surgical intervention for the treatment of severe corneal blindness. One step of the OOKP consists of creating a precise hole into a tooth in which an optic cylinder is subsequently inserted; its shape must ensure a perfect watertight fit. The Er: YAG laser (L) used in this study is part of CARLO®, the first laser osteotome that enables surgical planning based on computed tomography data, robot guidance, and a precise execution of laser cuts in teeth and bone tissue, using laser photoablation rather than conventional mechanical methods. The purpose of this study was to assess whether the Er: YAG laser is non-inferior compared to a conventional drill.
Methods: Thirty-two bovine incisors were grounded to a thickness of 1.5 mm. In 16 teeth, a 3.5 mm hole was drilled progressively into each tooth, using dental burs (B) of increasing diameter that were attached to a fixed drill machine. In the other 16 teeth, a hole was created using an Er: YAG laser at a wavelength of 2.94 µm (Part of CARLO®). In seven teeth of each group, the cylinder was inserted and fixated with polymethylmethacrylate (PMMA) bone cement. In the remaining seven teeth of each group, the cylinder was inserted without fixation material (press-fit). After bonding and drying, all specimens were stored in water until force measurements were recorded using a uniaxial traction machine. The force required to move the optical cylinder out of the hole in the tooth was measured using an Instron 3344 testing system. Scanning electron microscope (SEM) and light microscope (LM) visualization of the holes created with the laser and the drill were performed in two teeth (SEM)/four teeth (LM) per method.
Results: Significant differences (P < 0.001) were found for the following parameters: B PMMA versus B press-fit; B PMMA versus L press-fit; L PMMA versus B press-fit; L PMMA-L press-fit. This shows that PMMA bone cement fixation is superior to press-fit. No significant differences were found between B PMMA-L PMMA (P = 0.93) and B press-fit-L press-fit (P = 0.83). The SEM pictures showed a smoother surface using L.
Conclusions: The laser cut holes were as strong as bur-drilled holes, although SEM pictures showed a smoother surface of the laser cut holes. Hence, laser osteotomes open the possibility to custom fit the hole exactly to the width of the cylinder, which represents a potential advantage of the laser over the conventional bur. Lasers Surg. Med. 51:531-537, 2019. © 2019 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lsm.23053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!