The cascaded Raman fiber laser is a proven technology that provides wavelength agile high-power fiber lasers outside the rare-earth emission windows. However, conventional cascaded Raman fiber lasers lack wavelength agility due to the use of fixed wavelength fiber Bragg gratings. Recently, proposed cascaded Raman fiber lasers based on random distributed feedback have provided a grating-free solution enabling wavelength agility. With these lasers, wide wavelength tunability has been achieved. However, there are still limitations in scaling output power while maintaining high spectral purity of wavelength conversion. Spectral purity is characterized by the in-band power ratio, which is the ratio of the output power in the required wavelength to the total power. The origin of this limitation arises from the inability to efficiently terminate the Raman cascade at a specific wavelength with increasing power. In this Letter, we propose a novel filtered distributed feedback mechanism to terminate the Raman cascade at any desired wavelength, enabling power scaling with high spectral purity. Output power up to 28 W has been achieved with >85% in-band power ratio and >400  nm tuning range from 1118 to 1535 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.44.000279DOI Listing

Publication Analysis

Top Keywords

raman fiber
16
cascaded raman
12
fiber lasers
12
output power
12
spectral purity
12
wavelength
9
fiber laser
8
wavelength agility
8
distributed feedback
8
power
8

Similar Publications

This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.

View Article and Find Full Text PDF

Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.

View Article and Find Full Text PDF

Coexistence Demonstration and Wavelength Dependency Analysis of S-Band CV-QKD Signal with Fully Loaded C+L-Band DWDM Signals.

Entropy (Basel)

January 2025

Advanced Network Research Laboratories, NEC Corporation, Kawasaki 211-8666, Kanagawa, Japan.

We demonstrated the coexistence of an S-band CV-QKD signal with fully loaded C+L-band classical signals for the first time. The secret key rate of the S-band QKD system was 986 kbps with the C+L-band WDM signals transmitted through a 20 km G.654.

View Article and Find Full Text PDF

Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.

View Article and Find Full Text PDF

Availability of a suitable tool for carrying out non-invasive measurement of Raman signatures in situ, from biological tissues having low Raman cross section is a clinically unmet need faced with manifold challenges. A Raman probe can prove to be an invaluable component of clinical Raman diagnostic systems. We present development of a Raman probe capable of measuring artefact free Raman spectra of biological tissues in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!