Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nonlinear excitation regime two-line atomic fluorescence (NTLAF) is a promising two-dimensional (2D) thermometry technique for turbulent sooty flames. However, the complexity of calibrating three system parameters and expensive instruments restricts the application of the current NTLAF technique. Here we propose a simple and cheap NTLAF measurement approach based on a one-parameter model and tunable diode laser absorption spectroscopy (TDLAS) calibration. Using this methodology, only one system parameter, instead of three as in traditional NTLAF, is to be calibrated by path-averaged temperature acquired by the TDLAS technique. As a demonstration, instantaneous 2D thermometry data of a homemade burner were acquired using this approach, with measurement uncertainty of ∼4.5% and deviation from both reference TDLAS results and Raleigh scattering measurement results less than 50 K, typically within 20 K. This approach offers a novel simplified NTLAF solution for noncontact, in-suit, high-resolution 2D temperature measurement and is expected to greatly improve the compatibility of the NTLAF technique in scientific research and engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.000227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!