α-Amylases are glycoside hydrolases that break the α-1,4 bonds in starch and related glycans. The degradation of starch is rendered difficult by the presence of varying degrees of α-1,6 branch points and their possible accommodation within the active centre of α-amylase enzymes. Given the myriad industrial uses for starch and thus also for α-amylase-catalysed starch degradation and modification, there is considerable interest in how different α-amylases might accommodate these branches, thus impacting on the potential processing of highly branched post-hydrolysis remnants (known as limit dextrins) and societal applications. Here, it was sought to probe the branch-point accommodation of the Alicyclobacillus sp. CAZy family GH13 α-amylase AliC, prompted by the observation of a molecule of glucose in a position that may represent a branch point in an acarbose complex solved at 2.1 Å resolution. Limit digest analysis by two-dimensional NMR using both pullulan (a regular linear polysaccharide of α-1,4, α-1,4, α-1,6 repeating trisaccharides) and amylopectin starch showed how the Alicyclobacillus sp. enzyme could accept α-1,6 branches in at least the -2, +1 and +2 subsites, consistent with the three-dimensional structures with glucosyl moieties in the +1 and +2 subsites and the solvent-exposure of the -2 subsite 6-hydroxyl group. Together, the work provides a rare insight into branch-point acceptance in these industrial catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333287PMC
http://dx.doi.org/10.1107/S2059798318014900DOI Listing

Publication Analysis

Top Keywords

gh13 α-amylase
8
starch
6
structure alic
4
alic gh13
4
α-amylase
4
α-amylase alicyclobacillus
4
alicyclobacillus reveals
4
reveals accommodation
4
accommodation starch
4
starch branching
4

Similar Publications

Structural basis of the bifunctionality of Marinobacter salinexigens ZYF650 glucosylglycerol phosphorylase in glucosylglycerol catabolism.

J Biol Chem

December 2024

Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China.

2-O-α-Glucosylglycerol (GG) is a natural heteroside synthesized by many cyanobacteria and a few heterotrophic bacteria under salt stress conditions. Bacteria produce GG in response to stimuli and degrade it once the stimulus diminishes. Heterotrophic bacteria utilize GG phosphorylase (GGP), a member of the GH13_18 family, via a two-step process consisting of phosphorolysis and hydrolysis for GG catabolism.

View Article and Find Full Text PDF

Construction and enzymatic characterization of a monomeric variant of dimeric amylosucrase from Deinococcus geothermalis.

Int J Biol Macromol

January 2025

Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea. Electronic address:

Article Synopsis
  • Amylosucrase (ASase) from Deinococcus geothermalis (DgAS) is characterized as a dimeric enzyme that produces α-1,4-glucans using sucrose, and this study reveals key amino acids important for maintaining its dimeric structure.
  • The mutated monomeric form (DgAS R30A) shows a stronger affinity for sucrose and preferentially produces shorter α-glucans with a degree of polymerization (DP) of ≤20.
  • The research also uncovers the first high-resolution structure of dimeric DgAS, providing insights into enzyme activity and the significance of dimerization for its functional properties.
View Article and Find Full Text PDF

Enterobacter ludwigii has been proven by numerous studies to be an effective plant growth promoter. Enterobacter ludwigii T977 was isolated from leaves of Nicotiana tabacum L. Yunyan 97 which showing high starch degrading ability.

View Article and Find Full Text PDF

A distinctive function of GH13_8 subfamily glycogen branching enzyme in Anaerococcus prevotii DSM 20548: Preference to create very short branches.

Int J Biol Macromol

December 2024

Bioproduct Engineering, Engineering and Technology institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; Chemical Engineering Department, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, the Netherlands. Electronic address:

Glycogen branching enzymes (GBEs; EC 2.4.1.

View Article and Find Full Text PDF

Background: Despite the growing number of studies investigating the connection between host genetics and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we collected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!