A mononuclear iron(II) complex [Fe(N4Py)(OTf)](OTf)(1), supported by a new pentadentate ligand, bis(6-methylpyridin-2-yl)- N, N-bis((pyridin-2-yl)methyl)methanamine (N4Py), has been isolated and characterized. Introduction of methyl groups in the 6-position of two pyridine rings makes the N4Py a weaker field ligand compared to the parent N4Py ligand. Complex 1 is high-spin in the solid state and converts to [Fe(N4Py)(CHCN)](OTf) (1a) in acetonitrile solution. The iron(II) complex in acetonitrile displays temperature-dependent spin-crossover behavior over a wide range of temperature. In its reaction with m-CPBA or oxone in acetonitrile at -10 °C, the iron(II) complex converts to an iron(IV)-oxo species, [Fe(O)(N4Py)] (2). Complex 2 exhibits the Mössbauer parameters δ = 0.05 mm/s and Δ E = 0.62 mm/s, typical of N-ligated S = 1 iron(IV)-oxo species. The iron(IV)-oxo complex has a half-life of only 14 min at 25 °C and is reactive toward oxygen-atom-transfer and hydrogen-atom-transfer (HAT) reactions. Compared to the parent complex [Fe(O)(N4Py)], 2 is more reactive in oxidizing thioanisole and oxygenates the C-H bonds of aliphatic substrates including that of cyclohexane. The enhanced reactivity of 2 toward cyclohexane results from the involvement of the S = 2 transition state in the HAT pathway and a lower triplet-quintet splitting compared to [Fe(O)(N4Py)], as supported by DFT calculations. The second-order rate constants for HAT by 2 is well correlated with the C-H bond dissociation energies of aliphatic substrates. Surprisingly, the slope of this correlation is different from that of [Fe(O)(N4Py)], and 2 is more reactive only in the case of strong C-H bonds (>86 kcal/mol), but less reactive in the case of weaker C-H bonds. Using oxone as the oxidant, the iron(II) complex displays catalytic oxidations of substrates with low activity but with good selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b02577DOI Listing

Publication Analysis

Top Keywords

ironii complex
16
c-h bonds
12
complex
9
ironiv-oxo complex
8
n4py ligand
8
c-h bond
8
compared parent
8
ironiv-oxo species
8
[feon4py] reactive
8
aliphatic substrates
8

Similar Publications

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

A mononuclear iron(II) complex constructed using a complementary ligand pair exhibits intrinsic luminescence-spin-crossover coupling.

Dalton Trans

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.

Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).

View Article and Find Full Text PDF

The asymmetric Schiff base prepared from ethylenediamine and pyridine-2-carboxaldehyde reacts with Fe(ClO)·6HO to form the Fe(II) complex [FeL](ClO) with L = ,-diethyl-'-(pyridin-2-yl)methylene)ethane-1,2-diamine, where the Fe(III) starting material has been unexpectedly reduced to Fe(II). This complex was characterized by elemental analysis, infrared spectra, single crystal and powder X-ray diffraction measurements, variable temperature DC magnetic measurement and room temperature Mössbauer spectroscopy. The asymmetric ligand L coordinates in a tridentate fashion through its pyridyl, azomethine and amino nitrogen atoms, generating a distorted octahedral geometry around the central metal ion.

View Article and Find Full Text PDF

We report the synthesis and characterization of an iron(III)-hydroperoxo complex generated from salicylate-assisted dioxygen activation by a cation-liganded iron(II) complex. Spectroscopic and theoretical data revealed stabilization of the end-on hydroperoxo ligand, and mechanistic insights, including a "V-shaped" Hammett plot, were confirmed by conducting oxygen atom transfer and proton-coupled electron transfer reactions.

View Article and Find Full Text PDF

The nonheme iron(II) complexes containing a fluoride anion, Fe(BNPAO)(F) () and [Fe(BNPAOH)(F)(THF)](BF) (), were synthesized and structurally characterized. Addition of dioxygen to either or led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe(BNPAO)(F)(μ-F)] (), which was characterized by single-crystal X-ray diffraction, H NMR, and elemental analysis. An iron(II)(iodide) complex, Fe(BNPAO)(I) (), was prepared and reacted with O to give the mononuclear complex -Fe(BNPAO)(OH)(I) ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!