Biomedical applications of three-dimensional (3D) printing demand complex hydrogel-based constructs laden with living cells. Advanced support materials facilitate the fabrication of such constructs. This work demonstrates the versatility and utility of a gellan fluid gel as a support bath material for fabricating freeform 3D hydrogel constructs from a variety of materials. Notably, the gellan fluid gel support bath can supply sensitive biological cross-linking agents such as enzymes to printed fluid hydrogel precursors for mild covalent hydrogel cross-linking. This mild fabrication approach is suitable for fabricating cell-laden gelatin-based constructs in which mammalian cells can form intercellular contacts within hours of fabrication; cellular activity is observed over several days within printed constructs. In addition, gellan is compatible with a wide range of ionic and thermal conditions, which makes it a suitable support material for ionically cross-linked structures generated by printing alginate-based ink formulations as well as thermosensitive hydrogel constructs formed from gelatin. Ultraviolet irradiation of printed structures within the support bath is also demonstrated for photoinitiated cross-linking of acrylated ink materials. Furthermore, gellan support material performance in terms of printed filament stability and residual support material on constructs is found to be comparable and superior, respectively, to previously reported support materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b13792 | DOI Listing |
Biofabrication
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea, Pohang, 37673, Korea (the Republic of).
3D bioprinting technology offers significant advantages in the fabrication of tissue and organ structures by allowing precise layer-by-layer patterning of cells and various biomaterials. However, conventional bioinks exhibit poor mechanical properties, which limit their use in the fabrication of large-scale vascularized tissue constructs. To address these limitations, recent studies have focused on the development of rapidly crosslinkable bioinks through chemical modification.
View Article and Find Full Text PDFPLoS One
January 2025
Alliance for Research in Exercise Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
Background: Cold-water immersion (CWI) has gained popularity as a health and wellbeing intervention among the general population.
Objective: This systematic review and meta-analysis aimed to evaluate the psychological, cognitive, and physiological effects of CWI in healthy adults.
Methods: Electronic databases were searched for randomized trials involving healthy adults aged ≥ 18 years undergoing acute or long-term CWI exposure via cold shower, ice bath, or plunge with water temperature ≤15°C for at least 30 seconds.
Psychol Psychother
January 2025
Division of Psychology and Mental Health, University of Manchester, Manchester, UK.
Objectives: Loneliness in people who experience psychosis is common and associated with poor mental health. In this randomised trial, we tested the feasibility and acceptability of an adapted Groups for Health (G4H) intervention for loneliness, delivered in group or individual format.
Design: Mixed methods, two-arm feasibility randomised controlled trial.
J Sci Med Sport
January 2025
Centre for Health, and Injury & Illness Prevention in Sport, Department of Health, University of Bath, United Kingdom; UK Collaborating Centre on Injury & Illness Prevention in Sport (UKCCIIS), United Kingdom. Electronic address: https://twitter.com/statman_sean.
Objectives: To quantify the direct and indirect costs associated with injuries in professional men's cricket from 2015/16 to 2021/22 and to report the association between the cost of injuries and team success.
Design: Retrospective cohort study.
Methods: Injury insurance claims were obtained for cricket-related injuries to determine direct costs.
Biochemistry
January 2025
BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.
Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!