Fabrication and Characterization of a Capacitive Photodetector Comprising a ZnS/Cu Particle/Poly(vinyl butyral) Composite.

ACS Appl Mater Interfaces

School of Advanced Materials Engineering , Chonbuk National University, 567 Baekje-daero , Deokjin-gu, Jeonju 54896 , Republic of Korea.

Published: January 2019

Most photodetectors developed to date essentially measure photocurrents induced by the generation and separation of electron-hole pairs in semiconductors during irradiation. Although the above light detection method is well established, highly sensitive, and applicable to a broad range of semiconductor materials, it requires the presence of a stable and direct contact between the semiconductor and the electrode for accurate photocurrent measurements. In turn, this prerequisite necessitates the use of various costly processes for device fabrication (e.g., photolithography and vacuum deposition of semiconductors/metals) and complicates the development of flexible devices. Herein, inspired by the fact that the dielectric properties of certain materials can be changed by light irradiation, we dispersed ZnS/Cu semiconducting particles in poly(vinyl butyral) to prepare a free-standing composite film and formed two layers of Ag nanowire electrodes on both sides of the cured composite to fabricate a photodetector of a completely new type. The developed device exhibited a capacitance very sensitive to irradiation with light of a specific wavelength and additionally featured the advantages of simple structure/operation mechanism, mechanical flexibility, and transparency, not showing any signs of performance deterioration even after severe damage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b20136DOI Listing

Publication Analysis

Top Keywords

irradiation light
8
fabrication characterization
4
characterization capacitive
4
capacitive photodetector
4
photodetector comprising
4
comprising zns/cu
4
zns/cu particle/polyvinyl
4
particle/polyvinyl butyral
4
butyral composite
4
composite photodetectors
4

Similar Publications

Synergistic Enhancement of Ligand & Cluster Connectivity to Construct Highly Stable Fluorescein-Based MOFs with Thickened Channel Walls for Boosting Photocatalytic Activity.

Small

January 2025

Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China.

Fabricating visible-light-responsive metal-organic frameworks (MOFs) with high stability and effective catalytic functionality remains a long-term pursuit yet a great challenge. Herein, a strategy of increasing ligand and cluster connectivity is developed to construct highly stable fluorescein MOFs, La-CFL, presenting a new (4,8)-connected topological structure compared to Cd-FL constructed using 6-connected dinuclear clusters and 3-connected tritopic ligands. La(CFL) containers like Chinese "Ritual Wine Vessels (Jue)" resemble linear arrangements interconnected by the [La(COO)] clusters.

View Article and Find Full Text PDF

The interplay between RNA m6A modification and radiation biology of cancerous and non-cancerous tissues: a narrative review.

Cancer Biol Med

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

The diverse radiation types in medical treatments and the natural environment elicit complex biological effects on both cancerous and non-cancerous tissues. Radiation therapy (RT) induces oncological responses, from molecular to phenotypic alterations, while simultaneously exerting toxic effects on healthy tissue. N-methyladenosine (mA), a prevalent modification on coding and non-coding RNAs, is a key epigenetic mark established by a set of evolutionarily conserved enzymes.

View Article and Find Full Text PDF

A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles . The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating.

View Article and Find Full Text PDF

Recent progress in C-S bond formation electron donor-acceptor photoactivation.

Org Biomol Chem

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

Recent advancements in C-S bond formation electron donor-acceptor (EDA) complex photoactivation have been remarkable. EDA complexes, which are composed of electron donors and acceptors, facilitate C-S bond construction under mild conditions through single-electron transfer events upon visible light irradiation. This review highlights the utilization of various sulfur-containing substrates, including diacetoxybenzenesulfonyl (DABSO), sulfonic acids, sodium sulfinates, sulfonyl chlorides, and thiophenols, in EDA-promoted sulfonylation and thiolation reactions, covering the works published since 2017 to date.

View Article and Find Full Text PDF

Visible light induced photocatalytic degradation of norfloxacin using xC-TiO.

Heliyon

January 2025

Institute of Chemical Sciences, University of Swat, Swat, 19120, Khyber Pakhtunkhwa, Pakistan.

In recent years, antibiotic pollution has become a major environmental concern. The extensive production and widespread use of prescribed antibiotics have significantly impacted ecosystems. The main objective of the present study is to investigate the photocatalytic degradation of the antibiotic norfloxacin (NFX) under visible light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!