A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogels composed of hyaluronic acid and dendritic ELPs: hierarchical structure and physical properties. | LitMetric

Hydrogels composed of hyaluronic acid and dendritic ELPs: hierarchical structure and physical properties.

Soft Matter

Department of Chemical Engineering and the Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

Published: January 2019

Hydrogels that mimic the native extracellular matrix were prepared from hyaluronic acid (HA) and amine-terminated dendritic elastin-like peptides (denELPs) of generations 1, 2, and 3 (G1, 2, and 3) as crosslinking units. The physical properties of the hydrogels were investigated by rheology, scanning electron microscopy, swelling tests, small-angle X-ray scattering (SAXS), and model drug loading and release assays. Hydrogel properties depended on the generation number of the denELP, which contained structural segments based on the repeating GLPGL pentamer. Hydrogels with higher generation denELPs (G2 and 3) showed similar properties, but those prepared from G1 denELPs were rheologically weaker, had a larger mesh size, absorbed less model drug, and released the drug more quickly. Interestingly, most of the HA_denELP hydrogels studied here remained transparent upon gelation, but after lyophilization and addition of water retained opaque, "solid-like" regions for up to 4 d during rehydration. This rehydration process was carefully evaluated through time-course SAXS studies, and the phenomenon was attributed to the formation of pre-coacervates in the gel-forming step, which slowly swelled in water during rehydration. These findings provide important insights into the behavior of ELP-based hydrogels, in which physical crosslinking of the ELP domains can be controlled to tune mechanical properties, highlighting the potential of HA_denELP hydrogels as biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm02450bDOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
physical properties
8
properties hydrogels
8
model drug
8
ha_denelp hydrogels
8
hydrogels
7
properties
5
hydrogels composed
4
composed hyaluronic
4
acid dendritic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!