Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As much wind power is connected to the power system, the accommodation of the wind power in the power grids becomes a huge challenge to the operation model of China's power system. Releasing and improving the flexibility of the power system will be necessary and important to enable the accommodation of power generated with renewable energy sources, which is connected to the power grids on a large scale and accounts for a high proportion. The paper, with North Hebei as an example, discusses the relationship between the demand for the flexibility of thermal power units and the accommodation of wind power. This paper further analyzes the demand for peak load regulation in North Hebei at both the present and the future as well as the characteristics of power sources in the power grids of North Hebei and the technical potential of power generation. It also compares the quantity of curtailed power before and after the flexibility-oriented transformation of thermal power units in North Hebei and calculates the minimum technical output of thermal power under different levels of accommodation of wind power. The research shows that the peak load regulating resources in the power grids of North Hebei boast huge potential, but in the long term, to achieve the objective of a 10% curtailment rate of power generated with renewable energy sources, the minimum technical output of condensing units must be lower than the internationally advanced level of 25%. So, it is difficult to fulfill the said objective solely relying on the strengthened transformation of generating units. To reach the level of 5% curtailment rate of power generated with renewable energy sources, the minimum technical output must achieve breakthrough improvement, which requires continuous technological innovation and power flexibility in close coordination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-04177-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!