[Effect of down-regulation of growth arrest and DNA damage inducible protein 45β on PC9 lung adenocarcinoma cells].

Zhong Nan Da Xue Xue Bao Yi Xue Ban

Department of Oncology, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Published: November 2018

To explore the effect of down-regulation of growth arrest and DNA damage inducible protein 45β (GADD45β) on the PC9 lung adenocarcinoma cells.
 Methods: GADD45β gene siRNA sequence was designed and synthesized, which was transfected into PC9 lung adenocarcinoma cells through lentivirus transfection. Quantitative real-time PCR (qRT-PCR) and Western blot are used to examine the mRNA and protein levels of GADD45β in PC9 cells before and after the transfection. Annexin V-allophycocyanin (APC) double-staining flow cytometry was used to detect the apoptosis level after the transfection. The intracellular DNA content after transfection was detected by flow cytometry. The percentage of the cells at each period of cell cycle was calculated, and the effect of RNA interference on the cell growth were analyzed. The effects of RNA interference on the tumor-formation ability of cells were tested by counting the number of clones. MTT assay was used to test the half maximal inhibitory concentration (IC50) of PC9 cells for gefitinib. 
 Results: The 5'-AAATCCACTTCACGCTCAT-3' sequence was identified as the effective sequence for GADD45β gene RNA interference. The mRNA and protein expression levels of GADD45β were markedly decreased (both P<0.05) at 48 h after transfection of GADD45β-siRNA, which resulted in the increased apoptosis rate (P<0.05), decreased tumor clone number (P<0.05) and increased percentage of PC9 cell at the S stage and G2/M stage (P<0.05). The IC50 for gefitinib was decreased obviously (P<0.05).
 Conclusion: Down-regulation of GADD45β can reduce the colony-forming ability of PC9 cells, promote the cell apoptosis, and enhance the sensitivity of PC9 cells to gefitinib.

Download full-text PDF

Source
http://dx.doi.org/10.11817/j.issn.1672-7347.2018.11.007DOI Listing

Publication Analysis

Top Keywords

pc9 lung
12
lung adenocarcinoma
12
rna interference
12
down-regulation growth
8
growth arrest
8
arrest dna
8
dna damage
8
damage inducible
8
inducible protein
8
protein 45β
8

Similar Publications

Objectives: To examine how the glucose transporter SLC2A1 influences the proliferation and migration of lung adenocarcinoma (LUAD) and explore the underlying molecular mechanisms.

Methods: We examined the differential expression of SLC2A1 between normal and LUAD tissues in the TCGA database and its prognostic implications. Immunohistochemistry was used to detect SLC2A1 protein levels in clinical samples of LUAD and adjacent tissues, and the association of SLC2A1 expression levels with clinicopathological features of the patients was analyzed.

View Article and Find Full Text PDF

LncRNA EGFR‑AS1 promotes lung cancer cell proliferation, invasion and metastasis via regulation of miR‑449a/HDAC1.

Exp Ther Med

February 2025

Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Xuhui, Shanghai 200031, P.R. China.

There is increasing evidence that long non-coding (lnc)RNA EGFR-AS1 is involved in the development of numerous types of cancer, including non-small-cell lung cancer (NSCLC). The Cancer Genome Atlas (TCGA) demonstrates that EGFR-AS1 is highly expressed in NSCLC. Downregulation of EGFR-AS1 in A549 and PC9 NSCLC cells demonstrates inhibition of NSCLC proliferation, invasion and metastasis.

View Article and Find Full Text PDF

Unlabelled: Osimertinib has been demonstrated to be effective for improving the prognosis of patients with epidermal growth factor receptor mutation-positive lung cancer. However, osimertinib resistance inevitably emerges throughout the treatment course. This study explored the function and mechanism of long noncoding RNA LINC01278 in osimertinib-resistant NSCLC cells.

View Article and Find Full Text PDF

Single-Cell Mass Spectrometry Studies of Secondary Drug Resistance of Tumor Cells.

Anal Chem

December 2024

Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.

Patients with epidermal growth factor receptor mutant nonsmall cell lung cancer (NSCLC) often fail to treat gefitinib because of secondary drug resistance. The development of tumor drug resistance is closely related to variations in cancer cell metabolism. Single-cell metabolomics analysis can provide unique information about tumor drug resistance.

View Article and Find Full Text PDF

Integrative study of lung cancer adeno-to-squamous transition in EGFR TKI resistance identifies RAPGEF3 as a therapeutic target.

Natl Sci Rev

December 2024

Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.

Although adeno-to-squamous transition (AST) has been observed in association with resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in clinic, its causality, molecular mechanism and overcoming strategies remain largely unclear. We here demonstrate that squamous transition occurs concomitantly with TKI resistance in PC9-derived xenograft tumors. Perturbation of squamous transition via DNp63 overexpression or knockdown leads to significant changes in TKI responses, indicative of a direct causal link between squamous transition and TKI resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!