Retinoblastoma is a childhood retinal tumor that develops from cone photoreceptor precursors in response to inactivating mutations and loss of functional RB protein. The cone precursor's response to RB loss involves cell type-specific signaling circuitry that helps to drive tumorigenesis. One component of the cone precursor circuitry, the thyroid hormone receptor β2 (TRβ2), enables the aberrant proliferation of diverse RB-deficient cells in part by opposing the down-regulation of S-phase kinase-associated protein 2 (SKP2) by the more widely expressed and tumor-suppressive TRβ1. However, it is unclear how TRβ2 opposes TRβ1 to enable SKP2 expression and cell proliferation. Here, we show that in human retinoblastoma cells β mRNA encodes two TRβ2 protein isoforms: a predominantly cytoplasmic 54-kDa protein (TRβ2-54) corresponding to the well-characterized full-length murine Trβ2 and an N-terminally truncated and exclusively cytoplasmic 46-kDa protein (TRβ2-46) that starts at Met-79. Whereas TRβ2 knockdown decreased SKP2 expression and impaired retinoblastoma cell cycle progression, re-expression of TRβ2-46 but not TRβ2-54 stabilized SKP2 and restored proliferation to an extent similar to that of ectopic SKP2 restoration. We conclude that TRβ2-46 is an oncogenic thyroid hormone receptor isoform that promotes SKP2 expression and SKP2-dependent retinoblastoma cell proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393598 | PMC |
http://dx.doi.org/10.1074/jbc.AC118.006041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!