Aimed to rapidly identify the edible oils according to their botanical origin, a novel method was proposed using supervised support vector machine based on low-field nuclear magnetic resonance and relaxation features. The low-field (LF) nuclear magnetic resonance (NMR) signals of 11 types of edible oils were acquired, and 5 features were extracted from the transverse relaxation decay curves and modeled using support vector machines (SVM) for the identification of edible oils. Two SVM classification strategies have been applied and discussed. Good performance can be achieved when the relative position of each edible oil has been determined by PCA before the designing of binary tree structure of SVM model, and the classification accuracy is 99.04%. The good robustness of this method has been verify at different data sets. It is almost a real time method, and the entire process takes only 144 s.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2018.12.031DOI Listing

Publication Analysis

Top Keywords

support vector
12
low-field nuclear
12
nuclear magnetic
12
magnetic resonance
12
edible oils
12
identification edible
8
edible oil
8
supervised support
8
vector machine
8
machine based
8

Similar Publications

Objective: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regional lymph node metastasis in patients with colon cancer.

Methods: This retrospective study included 193 patients diagnosed with colon cancer between January 2014 and December 2017. All patients underwent F-18 FDG PET/CT and blood test before surgery.

View Article and Find Full Text PDF

Abnormal network homogeneity in patients with bipolar disorder in attention network.

Brain Imaging Behav

January 2025

Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China.

Bipolar disorder (BD) is a complex psychiatric condition marked by significant mood fluctuations that deeply affect quality of life. Understanding the neural mechanisms underlying BD is critical for improving diagnostic accuracy and developing more effective treatments. This study utilized resting-state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity within the ventral and dorsal attention networks in 52 patients with BD and 51 healthy controls.

View Article and Find Full Text PDF

Objectives: Rheumatoid arthritis (RA) is a chronic, destructive autoimmune disorder predominantly targeting the joints, with gut microbiota dysbiosis being intricately associated with its progression. The aim of the present study was to develop of effective early diagnostic methods for early RA based on gut microbiota.

Methods: A cohort comprising 262 RA patients and 475 healthy controls (HCs) was recruited.

View Article and Find Full Text PDF

An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach.

Syst Biol Reprod Med

December 2025

Department of Mathematics and Computer Science, Laboratory of Analysis, Modeling and Simulation, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, Casablanca, Morocco.

Infertility has emerged as a significant public health concern, with assisted reproductive technology (ART) is a last-resort treatment option. However, ART's efficacy is limited by significant financial cost and physical discomfort. The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!