A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Peeling Approach for Integrated Manufacturing of Large Monolayer h-BN Crystals. | LitMetric

Hexagonal boron nitride (h-BN) is the only known material aside from graphite with a structure composed of simple, stable, noncorrugated atomically thin layers. While historically used as a lubricant in powder form, h-BN layers have become particularly attractive as an ultimately thin insulator, barrier, or encapsulant. Practically all emerging electronic and photonic device concepts currently rely on h-BN exfoliated from small bulk crystallites, which limits device dimensions and process scalability. We here focus on a systematic understanding of Pt-catalyzed h-BN crystal formation, in order to address this integration challenge for monolayer h-BN via an integrated chemical vapor deposition (CVD) process that enables h-BN crystal domain sizes exceeding 0.5 mm and a merged, continuous layer in a growth time of less than 45 min. The process makes use of commercial, reusable Pt foils and allows a delamination process for easy and clean h-BN layer transfer. We demonstrate sequential pick-up for the assembly of graphene/h-BN heterostructures with atomic layer precision, while minimizing interfacial contamination. The approach can be readily combined with other layered materials and enables the integration of CVD h-BN into high-quality, reliable 2D material device layer stacks.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b08712DOI Listing

Publication Analysis

Top Keywords

h-bn
9
monolayer h-bn
8
h-bn crystal
8
peeling approach
4
approach integrated
4
integrated manufacturing
4
manufacturing large
4
large monolayer
4
h-bn crystals
4
crystals hexagonal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!