Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dairy cows undergo various transition periods throughout their productive life, which are associated with periods of increased metabolic and infectious disease susceptibility. Redox balance plays a key role in ensuring a satisfactory transition. Nevertheless, oxidative stress (OS), a consequence of redox imbalance, has been associated with an increased risk of disease in these animals. In the productive cycle of dairy cows, the periparturient and neonatal periods are times of increased OS and disease susceptibility. This article reviews the relationship of redox status and OS with diseases of cows and calves, and how supplementation with antioxidants can be used to prevent OS in these animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356809 | PMC |
http://dx.doi.org/10.3390/antiox8010020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!