Enabling Virtual AAA Management in SDN-Based IoT Networks .

Sensors (Basel)

Department of Information and Communications Engineering, University of Murcia, 30100 Murcia, Spain.

Published: January 2019

The increase of Software Defined Networks (SDN) and Network Function Virtualization (NFV) technologies is bringing many security management benefits that can be exploited at the edge of Internet of Things (IoT) networks to deal with cyber-threats. In this sense, this paper presents and evaluates a novel policy-based and cyber-situational awareness security framework for continuous and dynamic management of Authentication, Authorization, Accounting (AAA) as well as Channel Protection virtual security functions in IoT networks enabled with SDN/NFV. The virtual AAA, including network authenticators, are deployed as VNF (Virtual Network Function) dynamically at the edge, in order to enable scalable device's bootstrapping and managing the access control of IoT devices to the network. In addition, our solution allows distributing dynamically the necessary crypto-keys for IoT Machine to Machine (M2M) communications and deploy virtual Channel-protection proxys as VNFs, with the aim of establishing secure tunnels among IoT devices and services, according to the contextual decisions inferred by the cognitive framework. The solution has been implemented and evaluated, demonstrating its feasibility to manage dynamically AAA and channel protection in SDN/NFV-enabled IoT scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359622PMC
http://dx.doi.org/10.3390/s19020295DOI Listing

Publication Analysis

Top Keywords

iot networks
12
virtual aaa
8
network function
8
channel protection
8
iot devices
8
iot
7
enabling virtual
4
aaa
4
aaa management
4
management sdn-based
4

Similar Publications

One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.

View Article and Find Full Text PDF

The paper presents a double-radio wireless multimedia sensor node (WMSN) with a camera on board, designed for plant proximal monitoring. Camera sensor nodes represent an effective solution to monitor the crop at the leaf or fruit scale, with details that cannot be retrieved with the same precision through satellites or unnamed aerial vehicles (UAVs). From the technological point of view, WMSNs are characterized by very different requirements, compared to standard wireless sensor nodes; in particular, the network data rate results in higher energy consumption and incompatibility with the usage of battery-powered devices.

View Article and Find Full Text PDF

The paradigms of Industry 4.0 and Industrial Internet of Things (IIoT) require functional architectures to deploy and organize hardware and software taking advantage of modern digital technologies in industrial systems. In this sense, a lot of the literature proposes and describes this type of architecture with a conceptual angle, without providing experimental validation or with scarce details about the involved equipment under real operation.

View Article and Find Full Text PDF

As proximity-aware services among devices such as sensors, IoT devices, and user equipment are expected to facilitate a wide range of new applications in the beyond 5G and 6G era, managing heterogeneous environments with diverse node capabilities becomes essential. This paper analytically models and characterizes the performance of heterogeneous random access-based wireless mutual broadcast (RA-WMB) with distinct transmit (Tx) power levels, leveraging a marked Poisson point process to account for nodes' various Tx power. In particular, this study enables the performance of RA-WMB with heterogeneous Tx power to be represented in terms of the performance of RA-WMB with a common Tx power by deriving an equivalent Tx power based on the probability distribution of heterogeneous Tx power and the path loss exponent.

View Article and Find Full Text PDF

A Review of Asynchronous Byzantine Consensus Protocols.

Sensors (Basel)

December 2024

School of Cyberspace Science and Technology, Beijing Jiaotong University, Beijing 100044, China.

Blockchain technology can be used in the IoT to ensure the data privacy collected by sensors. In blockchain systems, consensus mechanisms are a key technology for maintaining data consistency and correctness. Among the various consensus protocols, asynchronous Byzantine consensus protocols offer strong robustness as they do not rely on any network timing assumptions during design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!