Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper focuses on an analysis of tool wear and optimum machining parameter in the induction assisted milling of Inconel 718 using high heat coated carbide and uncoated carbide tools. Thermally assisted machining is an effective machining method for difficult-to-cut materials such as nickel-based superalloy, titanium alloy, etc. Thermally assisted machining is a method of softening the workpiece by preheating using a heat source, such as a laser, plasma or induction heating. Induction assisted milling is a type of thermally assisted machining; induction preheating uses eddy-currents and magnetic force. Induction assisted milling has the advantages of being eco-friendly and economical. Additionally, the preheating temperature can be easily controlled. In this study, the Taguchi method is used to obtain the major parameters for the analysis of cutting force, surface roughness and tool wear of coated and uncoated tools under various machining conditions. Before machining experiments, a finite element analysis is performed to select the effective depth of the cut. The S/N ratio and ANOVA of the cutting force, surface roughness and tool wear are analyzed, and the response optimization method is used to suggest the optimal machining parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356316 | PMC |
http://dx.doi.org/10.3390/ma12020233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!