Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics.

Molecules

Northern Antibiotics, Espoo, Finland and Department of Bacteriology and Immunology, Helsinki University Medical School, Helsinki, Finland.

Published: January 2019

AI Article Synopsis

  • Polymyxins, specifically polymyxin B and colistin, are powerful antibiotics effective against Gram-negative bacteria but were largely set aside in the 1960s due to serious side effects like kidney toxicity.
  • Their use has made a comeback as last-resort treatments for extremely drug-resistant bacterial strains, prompting research into new, less toxic derivatives.
  • The review highlights the characteristics of promising permeabilizer derivatives such as PMBN, NAB7061, and SPR741/NAB741, which can enhance the effectiveness of other antibiotics by damaging bacterial outer membranes.

Article Abstract

Polymyxins (polymyxin B (PMB) and polymyxin E (colistin)) are cyclic lipodecapeptide antibiotics, highly basic due to five free amino groups, and rapidly bactericidal against Gram-negative bacteria, such as the majority of Enterobacteriaceae as well as and . Their clinical use was abandoned in the 1960s because of nephrotoxicity and because better-tolerated drugs belonging to other antibiotic classes were introduced. Now, due to the global dissemination of extremely-drug resistant Gram-negative bacterial strains, polymyxins have resurged as the last-line drugs against those strains. Novel derivatives that are less toxic and/or more effective at tolerable doses are currently under preclinical development and their properties have recently been described in several extensive reviews. Other derivatives lack any direct bactericidal activity but damage the outermost permeability barrier, the outer membrane, of the target bacteria and make it more permeable to many other antibiotics. This review describes the properties of three thus far best-characterized "permeabilizer" derivatives, i.e., the classic permeabilizer polymyxin B nonapeptide (PMBN), NAB7061, and SPR741/NAB741, a compound that recently successfully passed the clinical phase 1. Also, a few other permeabilizer compounds are brought up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359160PMC
http://dx.doi.org/10.3390/molecules24020249DOI Listing

Publication Analysis

Top Keywords

gram-negative bacteria
8
polymyxin
4
polymyxin derivatives
4
derivatives sensitize
4
sensitize gram-negative
4
bacteria antibiotics
4
antibiotics polymyxins
4
polymyxins polymyxin
4
polymyxin pmb
4
pmb polymyxin
4

Similar Publications

Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Objective: The presence of microorganisms in a wound may lead to the development of pathologically extensive inflammation, and either delay or prevent the healing of hard-to-heal (chronic) wounds. The aim of this case series is to explore the use of topical gentamicin ointment, an aminoglycoside with activity against aerobic Gram-negative bacteria, as an option to address hard-to-heal wounds.

Method: We present a retrospective case series of patients with hard-to-heal wounds of varying pathophysiologies treated with topical gentamicin.

View Article and Find Full Text PDF

A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.

Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!