Consequences of climate change will severely affect forest ecosystems in the near future, yet our understanding of how and why trees are responding to their abiotic environment is still limited. Intra-specific variation (ITV) in the growth response of trees to warming and drought has been widely neglected so far, but could play a key role for adapting forests to future climate conditions. We analyzed tree rings from four conifers (Picea abies, Abies alba, Larix decidua, Pseudotsuga menziesii) regarding their intra-specific adaptation potential when trees are growing at the warm and dry margins of species distributions. Our study comprises data from four common garden experiments (45 provenances and a total of 743 trees) and assessed growth response at different temporal scales from decades (long-term) to only a few event years (short-term) and finally for density fluctuations within one year (sudden response). We observed significant variation among provenances at all time-scales, but with varying degree among species. However, variation in short-term response (drought years) was remarkably unstable across all species, when the seasonal variation of drought occurrence was considered. Silver-fir and Douglas-fir showed significant associations between seed-source climate and growth response as well as trade-offs between early- and latewood growth reaction which strongly suggests that growth responses are adaptive. Intra-specific variation in conifers in response to drought will probably be sufficient to mitigate climate change consequences on forest growth, but growth-environment interactions as well as dependencies between temporal scales could create major pitfalls for adaptive forest management in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.12.478 | DOI Listing |
Oecologia
January 2025
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
Pollinators help maintain functional landscapes and are sensitive to floral nutritional quality. Both proteins and lipids influence pollinator foraging, but the role of individual biochemical components in pollen remains unclear. We conducted an experiment comprising common garden plots of six plant species (Asteraceae, Rosaceae, Onagraceae, Boraginaceae, and Plantaginaceae).
View Article and Find Full Text PDFEcol Lett
January 2025
Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain.
With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter- and intra-specific), pollinators and insect herbivores on plant performance (i.e.
View Article and Find Full Text PDFEvol Anthropol
March 2025
Center for the Advanced Study of Human Paleobiology, George Washington University, Washington DC, USA.
Nat Commun
December 2024
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4072, Australia.
The relationship between intra-specific and inter-specific patterns and processes over evolutionary time is key to ecological investigations. We examine this relationship taking an approach of focussing on the association between vegetation and floristic classifications, summaries of inter-specific processes, and intra-specific genetic structuring. Applying an innovative, multispecies, and standardised population genomic approach, we test the relationship between vegetation mapping schemes and structuring of genetic variation across a large, environmentally heterogenous region in eastern Australia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!