The core/shell micro-/nanostructures with versatility, tunability, stability, dispersibility, and biocompatibility are widely applied in optics, biomedicine, catalysis, and energy. Organic micro-/nanocrystals have significant applications in miniaturized optoelectronics because of their controllable self-assembly behavior, tunable optical properties, and tailor-made molecular structure. Nevertheless, the advanced organic core/shell micro-/nanostructures, which possess multifunctionality, flexibility, and higher compatibility, are rarely demonstrated because of the dynamic nature of molecular self-assembly and the complex epitaxial relationship of material combination. Herein, we demonstrate the one-dimensional organic core/shell micro-/nanostructures with component interchange, which originates from the 4,4'-((1 E,1' E)-(2,5-dimethoxy-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine (DPEpe) single-crystal microrods or the DPEpe-HCl single-crystal microrods after a reversible protonation or deprotonation process. Notably, the DPEpe/DPEpe-HCl core/shell microrods display vivid visualizations of tunable emission color via an efficient energy-transfer process during the stepwise formation of a shell layer. More significantly, these DPEpe/DPEpe-HCl and DPEpe-HCl/DPEpe core/shell microrods cooperatively demonstrate the multicolor optical waveguide properties continuously adjusted from green [CIE (0.326, 0.570)], to yellow [CIE (0.516, 0.465)], and to red [CIE (0.614, 0.374)]. Our investigation provides a new strategy to fabricate the organic core/shell micro-/nanostructures, which can eventually contribute to the advanced organic optoelectronics at the micro-/nanoscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b22317 | DOI Listing |
Small
January 2025
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, 500007, India.
Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFFood Chem
December 2024
Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China. Electronic address:
An innovative core-shell covalent organic framework (COF), FeO@COF (ETTBA-ND), was synthesized through a facile and energy-efficient method. This adsorbent facilitated magnetic solid phase extraction (MSPE) of six AFs prior to LC-MS/MS analysis, achieving one-step purification and enrichment in food matrices. The successful synthesis of the adsorbent was confirmed using various techniques, with adsorption capacities ranging from 46.
View Article and Find Full Text PDFChem Sci
December 2024
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University Nanyang 473601 P. R. China
The conversion of carbon dioxide (CO) into carbon-neutral fuels using solar energy is crucial for achieving energy sustainability. However, the high carrier charge recombination and low CO adsorption capacity of the photocatalysts present significant challenges. In this paper, a TAPB-COF@ZnInS-30 (TAPB-COFZ-30) heterojunction photocatalyst was constructed by growth of ZnInS (ZIS) on a hollow covalent organic framework (HCOF) with a hollow core-shell structure for CO to CO conversion.
View Article and Find Full Text PDFTalanta
January 2025
Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China. Electronic address:
Pre-designed core-shell metal-organic frameworks (MOFs@MOFs) with customized functionalities can enhance the material properties compared to conventional single MOFs. The porous carbon composites derived from MOFs@MOFs also have excellent functionality due to the presence of multiple metal/metal oxide nanoparticles. This paper synthesized a novel MOFs@MOFs composite (MIL-101(Fe)@Ni-MOF) with a core-shell structure with MIL-101(Fe) as the core and Ni-MOF as the shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!