The effectiveness of gypsum in reducing runoff P losses from soils and the mechanisms responsible are well documented; however, gypsum amendment effects in reducing redox-induced P losses from flooded soils are less researched and documented. We examined the effect of gypsum amendment on P release from freshly manured soils to pore water and floodwater with continuous flooding for 56 d in the laboratory. Three soils (Pembina, Denham, and Dencross series) collected from Manitoba, Canada, were preincubated with liquid swine manure. Each preincubated manured soil was packed into vessels with or without recycled wallboard gypsum in triplicates and flooded for 56 d, during which pore water and floodwater were sampled weekly and analyzed for pH and dissolved reactive P (DRP), Ca, Mg, Fe, and Mn concentrations. Change in soil redox potential (Eh) with flooding was also monitored. Wallboard gypsum amendment significantly decreased the pore water and surface floodwater DRP concentrations in all three soils for most days after flooding (DAF). The Dencross soil, which had Olsen P about fivefold greater than the other soils, showed the greatest magnitude decrease in DRP concentration with gypsum amendment, by 1.27 mg L on 49 DAF and 0.99 mg L on 21 DAF for pore water and floodwater, respectively. Gypsum amendment (i) delayed the Eh reduction with flooding beyond +200 mV, (ii) decreased pore water pH, and (iii) increased concentrations of Ca, Mg, and Mn in pore water favoring precipitation of P, all of which may have directly or indirectly reduced the P release from flooded soils to overlying floodwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2018.08.0308 | DOI Listing |
J Environ Qual
January 2025
Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada.
Phosphorus (P) loss from soils can contribute significantly toward P enrichment in water bodies, impairing water quality. Application of soil amendments is a viable strategy to decrease soluble P in surface soils. Since soluble P is reduced through different mechanisms that are amendment-specific, blended amendments could be a better approach than single amendment applications; however, very little information is available on blended amendment effects in reducing P loss from soils.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Agriculture, Ningxia University, Yinchuan, 750021, China. Electronic address:
Sci Total Environ
January 2025
Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; College of Ecology, Hainan University, Haikou 570228, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, PR China. Electronic address:
With global climate warming and ocean acidification, mineral amendments in coastal areas have emerged as a promising strategy to bolster carbon sinks and alkalinity. However, most research has predominantly focused on carbon dioxide (CO) absorption, with limited exploration of methane (CH) reduction despite its more potent greenhouse effect. To address this gap, our study conducted a microcosm manipulative experiment employing coastal wetlands sediments to elucidate the regulatory effects of various mineral amendments on greenhouse gas emissions (including CO and CH) and seawater alkalinity.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Biosphere 2, University of Arizona, Oracle, Arizona, USA.
Residue of energetic formulations, which is deposited on military training grounds following incomplete detonation, poses biotic hazards. This residue can be transported off-site, adsorb to soil clays and organic matter, transform or degrade, or taken up by plants and animals. Its harmful effects can be mitigated by localizing the energetics at the site of initial deposition using soil amendments and allowing them to bio- and photodegrade in situ.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, Alabama. Electronic address:
Several amendments have been used to reduce ammonia (NH) emissions from broiler litter (BL); however, a comparative study between amendments and their application rates has not been fully explored. This study evaluated the potential of biochar (B), zeolite (Z), Flue Gas Desulphurization-Gypsum (FGD-G), and sodium bisulfate (S) at four application rates in reducing NH emissions from BL. The treatments comprised of amendment types (4) and their application rates (4), and a control with no amendment for a total of 17 treatments replicated twice and arranged in a completely randomized design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!