Hydrogen sulfide (HS) contamination in biogas produced from animal wastes limits its use to cooking and precludes it from being used for heating, lighting, or electricity generation. This limitation results in the release to the atmosphere of between 3 and 51% of total biogas produced. Biogas contains 50 to 70% methane (CH), a potent greenhouse gas that contributes to global warming. This study aimed to develop a cost-effective HS filtering system using local materials rich in iron as iron oxide (FeO), which reacts readily with HS and forms adsorbed iron sulfide (FeS) when gas is passed through it. Here we tested the performance of seven New Zealand soils and sand, each at five different gas flow rates (59, 74, 94, 129, and 189 mL min). We found that three materials (allophanic soil, brown soil, and black sand) had stable HS removal efficiencies close to 100% at all gas flow rates, followed by typic sand (89-99%), raw sand (76-99%), acidic sand (48-89%), and podzol soil (58-87%). These results show that inexpensive and simple filters to remove HS from biogas can be made using local soils. Used soil in the filters can then be easily regenerated by exposure to the atmosphere and reused to achieve sustained HS removal efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2018.07.0271DOI Listing

Publication Analysis

Top Keywords

biogas produced
12
hydrogen sulfide
8
sulfide contamination
8
contamination biogas
8
produced animal
8
animal wastes
8
gas flow
8
flow rates
8
biogas
5
sand
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!