In this study, a new model based on anaerobic digestion model no.1 (ADM1) approach has been proposed to simulate trace elements (TEs) complexation, precipitation and their effect on the anaerobic batch methane production. TEs complexation reactions with VFAs and EDTA have been incorporated in an extended ADM1 model which considers TE precipitation/dissolution reactions as well as biodegradation processes. The kinetic model tracks the dynamics of 90 state variables which constitute the components of the proposed anaerobic digestion (AD) model. The incorporation of the complexation reactions required the definition of new inorganic components (EDTA species) and new complexation process rates in the ADM1 framework. The charge balance was modified accordingly to consider the effects of the additional components. The new model is able to predict: a) the effect of TE-EDTA/VFA complexation on methane production, and b) the effect of the initial calcium and magnesium concentrations on process performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.12.064DOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
12
digestion model
8
tes complexation
8
methane production
8
complexation reactions
8
model
7
complexation
6
adm1
4
adm1 based
4
based mathematical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!