Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems.

Environ Int

Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China. Electronic address:

Published: March 2019

Compared to drinking water, the higher bacterial abundance, diversity, and organic matter concentration in reclaimed wastewater suggest that it is more likely to form biofilms. Nevertheless, little is known regarding many important aspects of the biofilm ecology in reclaimed wastewater distribution systems (RWDS), such as the long-term microbial community succession and the underlying driving factors. In the present study, by sampling and analysing microbial compositions of pipe wall biofilms from six frequently used pipe materials under NaClO (sodium hypochlorite-treated), NON (without disinfection), and UV (UV-treated) treatments over one year, it was found that the succession of microbial community structure followed a primary succession pattern. This primary succession pattern was reflected as increases in live cell number and α-diversity, along with metagenic succession in taxonomic composition. Proteobacteria, Nitrospirae, Bacteroidetes, Acidobacteria, Planctomycetes, Actinobacteria, and Verrucomicrobia comprised the dominant phyla in biofilm samples. Compared to biofilms in the NaClO reactor, the bacterial communities of biofilms in NON and UV reactors were distributed more evenly among different bacterial phyla. Principal component analysis revealed a clear temporal pattern of microbial community structures in six kinds of pipe wall biofilms albeit a difference in microbial community structures among the three reactors. Adonis testing indicated that the microbial community composition variation caused by disinfection methods (R = 0.283, P < 0.01) was more pronounced than that from the time variable (R = 0.070, P < 0.01) and pipe material (R = 0.057, P < 0.01). Significantly positive correlation between average local abundance and occupancy was observed in biofilm communities of the three reactors, suggesting that the 'core-satellite' model could be applied to identify biofilm-preferential species under specific disinfection conditions in RWDS. The prevalence of family Sphingomonadaceae, known to show chlorine tolerance and powerful biofilm-forming ability in NaClO reactors, evidenced the habitat filtering consequent to environment pressure. Correlation-based network analysis revealed that taxonomic relatedness such as similar niches, cooperation, taxa overdispersion, and competition all functioned toward driving the bacterial assembly succession in RWDS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2018.12.040DOI Listing

Publication Analysis

Top Keywords

microbial community
20
primary succession
12
reclaimed wastewater
12
wastewater distribution
8
distribution systems
8
pipe wall
8
wall biofilms
8
succession pattern
8
community structures
8
microbial
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!