Tryptophan (Trp) oxidation in proteins leads to a number of events, including changes in color, higher order structure (HOS), and biological activity. We describe here a number of new findings through a comprehensive characterization of 6 monoclonal antibodies (mAbs) following selective oxidation of Trp residues by 2,2'-azobis(2-amidinopropane) dihydrochloride. Fluorescence spectroscopy, in combination with second derivative analysis, demonstrates that the loss of Trp fluorescence intensity is a sensitive indicator of Trp oxidation in mAbs. Size-exclusion chromatography with UV and intrinsic Trp fluorescence detection was demonstrated to be a useful method to monitor Trp oxidation levels in mAbs. Furthermore, the Trp oxidation levels measured by size-exclusion chromatography with UV and intrinsic Trp fluorescence detection were found to be in agreement with the values obtained from tryptic peptide mapping by liquid chromatography with mass spectrometric detection and correlate with the total solvent accessible surface area of the exposed Trp residues from in silico modeling. Finally, near-UV circular dichroism and Raman spectroscopy were used to evaluate the impact of Trp oxidation on HOS and identify specific oxidation products, respectively. This work demonstrates that protein HOS is altered on Trp oxidation in mAbs and multiple spectroscopic markers can be used to monitor the molecule-dependent Trp oxidation behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.12.027DOI Listing

Publication Analysis

Top Keywords

trp oxidation
28
trp
12
trp fluorescence
12
oxidation
10
higher order
8
order structure
8
trp residues
8
oxidation mabs
8
size-exclusion chromatography
8
chromatography intrinsic
8

Similar Publications

Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.

View Article and Find Full Text PDF

The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR).

View Article and Find Full Text PDF

Amino acids are the basic structural units of life, and their intake levels affect disease and health. In the case of renal disease, alterations in amino acid metabolism can be used not only as a clinical indicator of renal disease but also as a therapeutic strategy. However, the biological roles and molecular mechanisms of natural chiral amino acids in human proximal tubular epithelial cells (HK-2) remain unclear.

View Article and Find Full Text PDF

Live fish transportation plays a crucial role in the commercial fish trade. Consequently, mitigating stress during transportation is essential for enhancing the survival rate of fish and reducing potential financial losses. In this study, the effectiveness was evaluated of exogenous tryptophan in reducing transport stress in hybrid grouper, ♀ × ♂.

View Article and Find Full Text PDF

Electron-rich anilines as cleavable linkers for peptides.

Bioorg Chem

December 2024

Department of Chemistry, University of Richmond, Gottwald Science Center, B-100 138 UR Drive, Richmond, VA 23173, United States. Electronic address:

We report the development of a new electron-rich aniline (ERA)-based cleavable linker. Anilines can be incorporated into peptides during SPPS and are stable to most reaction conditions. ERA-containing peptides can be cleaved rapidly in the presence of oxidants, such as DDQ, CAN, and NaIO, in 30 min at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!