Predicting bacterial levels in watersheds in response to agricultural beneficial management practices (BMPs) requires understanding the germane processes at both the watershed and field scale. Controlling subsurface tile drainage (CTD) is a highly effective BMP at reducing nutrient losses from fields, and watersheds when employed en masse, but little work has been conducted on CTD effects on bacterial loads and densities in a watershed context. This study compared fecal indicator bacteria (FIB) [E. coli, Enterococcus, Fecal coliform, Total coliform, Clostridium perfringens] densities and unit area loads (UAL) from a pair of flat tile-drained watersheds (∼250-467 ha catchment areas) during the growing season over a 10-year monitoring period, using a before-after-control-impact (BACI) design (i.e., test CTD watershed vs. reference uncontrolled tile drainage (UCTD) watershed during a pre CTD intervention period and a CTD-intervention period where the test CTD watershed had CTD deployed on over 80% of the fields). With no tile drainage management, upstream tile drainage to ditches comprised ∼90% of total ditch discharge. We also examined FIB loads from a subset of tile drained fields to determine field load contributions to the watershed drainage ditches. Statistical evidence of a CTD effect on FIB UAL in the surface water systems was not strong; however, there was statistical evidence of increased FIB densities [pronounced when E. coli >200 most probable number (MPN) 100 mL] in the test CTD watershed during the CTD-intervention period. This was likely a result of reduced dilution/flushing in the test CTD watershed ditch due to CTD significantly decreasing the amount of tile drainage water entering the surface water system. Tile E. coli load contributions to the ditches were low; for example, during the 6-yr CTD-intervention period they amounted to on average only ∼3 and ∼9% of the ditch loads for the test CTD and reference UCTD watersheds, respectively. This suggests in-stream, or off-field FIB reservoirs and bacteria mobilization drivers, dominated ditch E. coli loads in the watersheds during the growing season. Overall, this study suggested that decision making regarding deployment of CTD en masse in tile-fed watersheds should consider drainage practice effects on bacterial densities and loads, as well as CTD's documented capacity to boost crop yields and reduce seasonal nutrient pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2018.11.074 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, Indiana 47907, United States.
This study evaluated PFAS occurrence in rural well water and surface water relative to land application of biosolids in a tile-drained agriculture-dominated watershed. Spatial data were used to identify potentially vulnerable rural wells based on their proximity to biosolid-permitted land and location with respect to groundwater flow. Water was collected from 103 private wells in Greater Tippecanoe County Indiana and 168 surface water locations within the Region of the Great Bend of the Wabash River watershed.
View Article and Find Full Text PDFJ Environ Qual
December 2024
USDA-ARS National Laboratory for Agriculture and the Environment, Ames, Iowa, USA.
Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.
View Article and Find Full Text PDFJ Environ Qual
January 2025
USDA-ARS, Soil Drainage Research Unit, Columbus, Ohio, USA.
Phosphorus (P) loading from tile-drained agricultural lands is linked to water quality and aquatic ecosystem degradation. The RZWQM2-P model was developed to simulate the fate and transport of P in soil-water-plant systems, especially in tile-drained croplands. Comprehensive evaluation and application of RZWQM2-P, however, remains limited.
View Article and Find Full Text PDFSci Total Environ
December 2024
SIMAU - Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!