Although buffer zones around aquatic areas are a useful method for controlling non-point source pollution and restoring natural ecosystem services, proper delineation methods for lakes remain poorly defined, restricting their protection and the rational utilization of resources. As the width of lake buffer zones should be set to meet the area's functional targets and requirements, this study proposes a methodology for delineating these zones that includes critical source areas for non-point source pollution and ecologically sensitive areas. The proposed method was tested on Zhushan Bay, Lake Tai, China given its poor environmental condition and a renewed focus on mitigation by the local government. Data sources and relative processing methods include vector data on land use and hydrographic networks processed by ArcGIS, digital elevation model (DEM) data with 30 m resolution, soil and socioeconomic data from local governmental statistical yearbooks, NPS pollution load into lake obtained by literatures and field survey. The results showed that a minimum buffer range could be practically determined while meeting the requirements of both environmental protection and economic needs, providing a theoretical and practical basis for the improved delineation and management of lake buffer zones in watersheds dominated by non-point source pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.468DOI Listing

Publication Analysis

Top Keywords

buffer zones
16
non-point source
16
source pollution
16
lake buffer
12
zones watersheds
8
watersheds dominated
8
dominated non-point
8
lake
5
buffer
5
zones
5

Similar Publications

Forests play a vital role in environmental balance, supporting biodiversity and contributing to atmospheric purification. However, forest fires threaten this balance, making the identification of forest fire probability (FFP) areas crucial for effective mitigation. This study assesses forest fire trends and susceptibility in the Similipal Biosphere Reserve (SBR) from 2012 to 2023 using four machine learning models-extreme gradient boosting tree (XGBTree), AdaBag, random forest (RF), and gradient boosting machine (GBM).

View Article and Find Full Text PDF

It is well recognised that endothermic processes such as dehydration and partial melting have the potential to exert measurable effects on the maximum temperatures reached in metamorphic rock systems. We show migmatitic metapelitic and mafic granulites record temperatures of ~ 820 °C, while spatially associated refractory Mg-Al-rich granulites record temperatures between 865 °C and > 920 °C. These thermally contrasting samples are separated by ~ 1500 m, with no apparent intervening faults or shear zones to explain the apparent difference in peak metamorphic conditions.

View Article and Find Full Text PDF

Assessing riparian functioning condition for improved ecosystem services: A case study of the Back Creek watershed (Virginia, USA).

J Environ Manage

January 2025

U.S. Environmental Protection Agency, Office of Research and Development, 960 College Station Rd., Athens, GA, 30605, USA. Electronic address:

Riparian functioning condition refers to a rating and description of the current ecological status of a reach of a riparian ecosystem in consideration of its potential hydrology, vegetation, and geomorphology. Reach rating options are Proper Functioning Condition (PFC), Functional-At-Risk (FAR), Non-Functional, and apparent or monitored trends. We assessed the functioning condition of flowing riverbank areas of Back Creek located in Virginia (USA) following a PFC protocol developed by the U.

View Article and Find Full Text PDF

In North America, raccoon rabies virus (RRV) is a public health concern due to its potential for rapid spread, maintenance in wildlife, and impact on human and domesticated animal health. RRV is an endemic zoonotic pathogen throughout the eastern USA. In 1991, an outbreak of RRV in Fairfield County, Connecticut, spread through the state and eventually throughout the Northeast and into Canada.

View Article and Find Full Text PDF

Establishing and managing nature reserves to mitigate wildlife habitat loss and fragmentation is challenging, particularly in the face of increasing human activity. To understand how wildlife coexists in environments affected by anthropogenic disturbances, we conducted a 19-month survey examining the Reeves's pheasant () and Koklass pheasant () in the Anhui Tianma National Nature Reserve, China. Previous studies of large terrestrial birds focused primarily on livestock impacts, with less attention given to other human activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!