A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Virus deposition onto polyelectrolyte-coated surfaces: A study with bacteriophage MS2. | LitMetric

Virus deposition onto polyelectrolyte-coated surfaces: A study with bacteriophage MS2.

J Colloid Interface Sci

Department of Civil and Environmental Engineering, 428 South Shaw Lane, Michigan State University, East Lansing, MI 48824, USA. Electronic address:

Published: March 2019

Hypotheses: By selecting constituent polyelectrolytes and controlling conditions of their deposition, the resulting polyelectrolyte multilayers can be designed as surface coatings with controlled adhesive properties with respect to viruses. Charge and hydrophilicity of the polyelectrolyte multilayers govern virus adhesion.

Experiments: Four surfaces of different charges and hydrophobicities were designed using a layer-by-layer assembly of poly(styrene-4-sulfonate) and poly(dimethyl diallyl ammonium chloride). Contact angle measurements gave an estimate of MS2 hydrophilicity in terms of free energy of interfacial interaction in water. Experimental results on MS2 adhesion obtained using quartz crystal microbalance with dissipation monitoring were compared with predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory.

Findings: MS2 deposition onto polyelectrolyte multilayers occurred in two phases: an early phase defined by virus-surface interactions and a later phase with virus-virus interactions controlling deposition kinetics. Principal component analysis showed that the deposition rates in the two phases were independent one of another and that each was correlated to the depth of the secondary minimum of the corresponding XDLVO energy profile. Hydrophobic and electrostatic interactions governed the deposition process: short range hydrophilic repulsion prevented deposition into the primary minimum while electrostatic interactions defined the dependence of the deposition kinetics on the ionic strength. Different surfaces showed distinct kinetics of and capacities for MS2 deposition pointing to the potential of polyelectrolyte multilayers as easy-to-apply coatings for regulating virus adsorption, inactivating viruses via the virucidal action of cationic polyelectrolytes and reducing human exposure to viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.12.107DOI Listing

Publication Analysis

Top Keywords

polyelectrolyte multilayers
16
deposition
8
deposition polyelectrolyte
8
ms2 deposition
8
deposition kinetics
8
electrostatic interactions
8
ms2
5
virus deposition
4
deposition polyelectrolyte-coated
4
polyelectrolyte-coated surfaces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!