A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exosomes populate the cerebrospinal fluid of preterm infants with post-haemorrhagic hydrocephalus. | LitMetric

Background: Preterm infants are at risk of germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH) which leads to post-haemorrhagic hydrocephalus (PHH) in 30% of infants; this is associated with moderate-severe neurodevelopmental impairment and confers significant risk of cerebral palsy. There are however no predictive indicators of the severity or long-term outcome after GMH-IVH. In recent years, endosome-derived extracellular vesicles (EVs) or exosomes have been isolated from biofluids and shown to mediate intercellular communication via selective enrichment in proteins and micro-RNAs.

Methods: This study aimed to isolate and characterise EVs from the cerebrospinal fluid (CSF) of 3 preterm infants with PHH using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) with immunogold protein labelling, and micro-RNA analysis.

Results: NTA of unaltered CSF revealed a heterogeneous and dynamic population of EVs. Exosomal-sized EVs were isolated by differential ultracentrifugation and TEM confirmed the presence of CD63 and CD81 exosomes. The micro-RNAs miR-9, miR-17, miR-26a, miR-124 and miR-1911 were detected within the exosome-enriched fraction and profiled over time.

Conclusion: This is the first reported characterisation of exosomes from the CSF of preterm infants with post-haemorrhagic hydrocephalus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2019.01.004DOI Listing

Publication Analysis

Top Keywords

preterm infants
16
post-haemorrhagic hydrocephalus
12
cerebrospinal fluid
8
infants post-haemorrhagic
8
csf preterm
8
infants
5
exosomes
4
exosomes populate
4
populate cerebrospinal
4
preterm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!