Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Muscle wasting or atrophy is extensively associated with human systemic diseases including diabetes, cancer, and kidney failure. Accumulating evidence from transcriptional profiles has noted that a common set of genes, termed atrogenes, is modulated in atrophying muscles. However, the transcriptional changes that trigger the reversion or attenuation of muscle atrophy have not been characterized at the molecular level until now. Here, we applied cDNA microarrays to investigate the transcriptional response of androgen-sensitive Levator ani muscle (LA) during atrophy reversion. Most of the differentially expressed genes behaved as atrogenes and responded to castration-induced atrophy. However, seven genes (APLN, DUSP5, IGF1, PIK3IP1, KLHL38, PI15, and MKL1) did not respond to castration but instead responded exclusively to testosterone replacement. Considering that almost all proteins encoded by these genes are associated with the reversion of atrophy and may function as regulators of cell proliferation/growth, our results provide new perspectives on the existence of anti-atrogenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2019.01.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!