In Saccharomyces cerevisiae, transcription termination at protein-coding genes is coupled to the cleavage of the nascent transcript, whereas most non-coding RNA transcription relies on a cleavage-independent termination pathway involving Nrd1, Nab3, and Sen1 (NNS). Termination involves RNA polymerase II CTD phosphorylation, but a systematic analysis of the contribution of individual residues would improve our understanding of the role of the CTD in this process. Here we investigated the effect of mutating phosphorylation sites in the CTD on termination. We observed widespread termination defects at protein-coding genes in mutants for Ser2 or Thr4 but rare defects in Tyr1 mutants for this genes class. Instead, mutating Tyr1 led to widespread termination defects at non-coding genes terminating via NNS. Finally, we showed that Tyr1 is important for pausing in the 5' end of genes and that slowing down transcription suppresses termination defects. Our work highlights the importance of Tyr1-mediated pausing in NNS-dependent termination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2018.12.002 | DOI Listing |
Int J Mol Sci
January 2025
Research Institute for Systems Biology and Medicine (RISBM), Nauchnyi proezd 18, 117246 Moscow, Russia.
SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
Background: Casein kinase I protein Hrr25 plays important roles in many cellular processes, including autophagy, vesicular trafficking, ribosome biogenesis, mitochondrial biogenesis, and the DNA damage response in . Pin4 is a multi-phosphorylated protein that has been reported to be involved in the cell wall integrity (CWI) pathway and DNA damage response. Pin4 was reported to interact with Hrr25 in yeast two-hybrid and large-scale pulldown assays.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Department of Neuroradiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Purpose: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. In recent years, blood biomarkers including glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have shown a promising ability to detect head CT abnormalities following TBI. This review aims to combine the existing research on GFAP and UCH-L1 biomarkers and examine how well they can predict abnormal CT results after mild TBI.
View Article and Find Full Text PDFZ Geburtshilfe Neonatol
January 2025
Neonatologie, Universitätsklinikum Erlangen, Kinder- und Jugendklinik, Erlangen, Germany.
The widespread use of non-invasive prenatal testing (NIPT) has turned prenatal diagnostics for chromosomal abnormalities from the exception to the rule. A common finding is the suspicion of trisomy 21 in the fetus, which should result in the offer of multidisciplinary counseling. The significance of this for decision-making by the pregnant woman has not yet been investigated.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:
The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!