Maresin 1 (MaR1) confers brain-protective effects against cerebral ischemia/reperfusion (I/R) injury. Activation of silent information regulator 1 (SIRT1) signaling has also been demonstrated to inhibit cerebral I/R injury. We hypothesize that MaR1 may protect against cerebral I/R injury by activating SIRT1 signaling. The present study investigated the protective effect of MaR1 treatment on cerebral I/R injury and elucidated the potential mechanisms. Mice were exposed to the treatment in the presence or absence of MaR1 or the SIRT1 inhibitor EX527 and then subjected to the middle cerebral artery occlusion (MCAO) operation. MaR1 conferred a brain-protective effect by up-regulating SIRT1 and Bcl2 expression, down-regulating acetylated neuclear factor kappaB (AC-NF-κB) and Bax expression, reducing pro-inflammatory factor levels (IL-1, IL-6 and TNF-α), increasing the mitochondrial membrane potential, and diminishing neuronal degeneration, the infarct size and the neurological defects of cerebral I/R. These protective effects were partially blocked by the SIRT1 inhibitor EX527, indicating that SIRT1 signaling might be specifically involved in the protection provided by MaR1 against cerebral I/R injury. In summary, our results demonstrate that MaR1 treatment attenuates cerebral I/R injury by reducing inflammatory responses and mitochondrial damage via activation of SIRT1 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2019.01.013 | DOI Listing |
Apoptosis
January 2025
Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.
View Article and Find Full Text PDFAnn Chir Plast Esthet
January 2025
Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.
Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:
Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, Affiliated Hospital of Jiangnan University, 214122 Wuxi, Jiangsu, China.
Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!