Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex.

Cell

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Department of Photon Science, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA. Electronic address:

Published: January 2019

Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein G. Activation of CB1-G signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of G activation by CB1. Here, we present the structure of the CB1-G signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities. The structure illustrates how FUB stabilizes the receptor in an active state to facilitate nucleotide exchange in G. The results compose the structural framework to explain CB1 activation by different classes of ligands and provide insights into the G protein coupling and selectivity mechanisms adopted by the receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461403PMC
http://dx.doi.org/10.1016/j.cell.2018.11.040DOI Listing

Publication Analysis

Top Keywords

cannabinoid receptor
8
cb1-g signaling
8
receptor
5
structure signaling
4
signaling cannabinoid
4
receptor 1-g
4
1-g protein
4
protein complex
4
complex cannabis
4
cannabis elicits
4

Similar Publications

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses.

View Article and Find Full Text PDF

2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.

View Article and Find Full Text PDF

Navelina oranges () are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels.

View Article and Find Full Text PDF

Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds.

Biomedicines

January 2025

Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.

Antipsychotic medications are a vast class of drugs used for the treatment of psychotic disorders such as schizophrenia. Although numerous compounds have been developed since their introduction in the 1950s, several patients do not adequately respond to current treatments, or they develop adverse reactions that cause treatment discontinuation. Moreover, in the past few decades, discoveries in the pathophysiology of psychotic disorders have opened the way for experimenting with novel compounds that have alternative mechanisms of action, with some of them showing promising results in early trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!