Acoustic cavitation can be used to temporarily disrupt cell membranes for intracellular delivery of large biomolecules. Termed sonoporation, the ability of this technique for efficient intracellular delivery (i.e., >50% of initial cell population showing uptake) while maintaining cell viability (i.e., >50% of initial cell population viable) has proven to be very difficult. Here, we report that phase-shift nanoemulsions (PSNEs) function as inertial cavitation nuclei for improvement of sonoporation efficiency. The interplay between ultrasound frequency, resultant microbubble dynamics and sonoporation efficiency was investigated experimentally. Acoustic emissions from individual microbubbles nucleated from PSNEs were captured using a broadband passive cavitation detector during and after acoustic droplet vaporization with short pulses of ultrasound at 1, 2.5 and 5 MHz. Time domain features of the passive cavitation detector signals were analyzed to estimate the maximum size (R) of the microbubbles using the Rayleigh collapse model. These results were then applied to sonoporation experiments to test if uptake efficiency is dependent on maximum microbubble size before inertial collapse. Results indicated that at the acoustic droplet vaporization threshold, R was approximately 61.7 ± 5.2, 24.9 ± 2.8, and 12.4 ± 2.1 μm at 1, 2.5 and 5 MHz, respectively. Sonoporation efficiency increased at higher frequencies, with efficiencies of 39.5 ± 13.7%, 46.6 ± 3.28% and 66.8 ± 5.5% at 1, 2.5 and 5 MHz, respectively. Excessive cellular damage was seen at lower frequencies because of the erosive effects of highly energetic inertial cavitation. These results highlight the importance of acoustic cavitation control in determining the outcome of sonoporation experiments. In addition, PSNEs may serve as tailorable inertial cavitation nuclei for other therapeutic ultrasound applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859868 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2018.12.001 | DOI Listing |
Ultrason Sonochem
January 2025
Acoustic droplet vaporization (ADV) plays a crucial role in ultrasound-related biomedical applications. While previous models have examined the stages of nucleation, growth, and oscillation in isolation, which may limit their ability to fully describe the entire ADV process. To address this, our study developed an integrated model that unifies these three stages of ADV, stimulated by a continuous nonlinear dual-frequency ultrasound wave.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada.
Gene therapy targeting ischemic heart disease is a promising therapeutic avenue, but it is mostly restricted to viral-based delivery approaches which are limited due to off-target immunological responses. Focused ultrasound presents a non-viral, image-guided technique in which circulating intravascular microbubble contrast agents can reversibly enhance vascular permeability and gene penetration. Here, we explore the influence of flow rate on the microbubble-assisted delivery of miR-126, a potent pro-angiogenic biologic, using a custom acoustically coupled pressurized mesenteric artery model.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
School of Engineering Computing and Mathematics, Oxford Brookes University, Oxford, UK; Department of Materials, University of Oxford, Oxford, UK.
This study experimentally investigates the role of cavitation-induced shock waves in initiating and destabilizing capillary (surface) waves on a droplet surface, preceding atomization. Acoustic emissions and interfacial wave dynamics were simultaneously monitored in droplets of different liquids (water, isopropyl alcohol and glycerol), using a calibrated fiber-optic hydrophone and high-speed imaging. Spectral analysis of the hydrophone data revealed distinct subharmonic frequency peaks in the acoustic spectrum correlated with the wavelength of capillary waves, which were optically captured during the onset of atomization from the repetitive imploding bubbles.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China. Electronic address:
Acoustic cavitation is a cutting-edge and eco-friendly advanced oxidation technology with significant efficacy in removing organic pollutants from water. Despite its potential, research on the degradation of o-cresol, a common and challenging phenolic pollutant, is limited. This study systematically investigates the optimal conditions for degrading o-cresol via acoustic cavitation and evaluates its application potential through extensive pilot tests.
View Article and Find Full Text PDFJ Ultrasound Med
January 2025
Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
Objectives: Our previous studies have found that low-frequency, low-pressure, weakly focused ultrasound (FUS) can induce acoustic droplet vaporization (ADV) of perfluoropentane (PFP) droplets and result in localized liver and prostate tissue controllable cavitation resonance and mechanical damage. To further investigate the mechanical erosion induced by ultrasound and locally injected phase-shift acoustic droplets in rabbit liver.
Methods: The liver of each rabbit was treated with perfluoromethylcyclopentane (PFMCP) alone, FUS combined with PFMCP (FUS + PFMCP), and FUS combined with PFP (FUS + PFP).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!