We recently developed an oxidative intramolecular 1,2-amino-oxygenation reaction, combining gold(I)/gold(III) catalysis, for accessing structurally unique ionic pyridinium-oxazole dyads (PODs) with tunable emission wavelengths. On further investigation, these fluorophores turned out to be potential biomarkers; in particular, the one containing -NMe functionality (NMe-POD) was highly selective for mitochondrial imaging. Of note, because of mitochondria's involvement in early-stage apoptosis and degenerative conditions, tracking the dynamics of mitochondrial morphology with such imaging technology has attracted much interest. Along this line, we wanted to build a library of such PODs which are potential mitochondria trackers. However, Au/Selecfluor, our first-generation catalyst system, suffers from undesired fluorination of electronically rich PODs resulting in an inseparable mixture (1:1) of the PODs and their fluorinated derivatives. In our attempt to search for a better alternative to circumvent this issue, we developed a second-generation approach for the synthesis of PODs by employing Cu(II)/PhI(OAC)-mediated oxidative 1,2-amino-oxygenation of alkynes. Thes newly synthesized PODs exhibit tunable emissions as well as excellent quantum efficiency up to 0.96. Further, this powerful process gives rapid access to a library of NMe-PODs which are potential mitochondrial imaging agents. Out of the library, the randomly chosen POD-3g was studied for cell-imaging experiments which showed high mitochondrial specificity, superior photostability, and appreciable tolerance to microenvironment changes with respect to commercially available MitoTracker green.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.8b02528 | DOI Listing |
Nano Lett
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.
View Article and Find Full Text PDFThe polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis.
View Article and Find Full Text PDFMater Horiz
January 2025
Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
Enzyme-instructed self-assembly (EISA) is a promising approach to anti-cancer therapeutics due to its precise targeting and unique cell death mechanism. In this study, we introduce a small molecule, DN6, which undergoes nitroreductase (NTR)-responsive liquid-liquid phase separation (LLPS) followed by a liquid-to-solid phase transition (LST) through a gel-like intermediate state, resulting in the formation of nanoaggregates with spatiotemporal control. The reduced form of DN6 (DN6R), owing to its aggregation-induced emission (AIE) and mitochondria-targeting capabilities, has been employed for organelle-specific imaging of tumor hypoxia.
View Article and Find Full Text PDFAnal Chem
January 2025
Shandong Provincial Key Laboratory of Tumor Imaging Equipment Development and Integrated Diagnosis and Treatment Technology, Linyi University, Linyi 276000, China.
Drug-induced liver injury (DILI) has emerged as an urgent clinical challenge. It is characterized by mitochondrial dysfunction in liver cells, which leads to abnormal changes in HO levels within the mitochondria. Super-resolution imaging allows for the observation of the fine structure of mitochondria at the nanometer scale, potentially enabling the detection of mitochondrial HO levels during DILI at the subcellular organelle level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!