The Schmidt reaction of ω-azido valeryl chlorides in the presence of an additional nucleophile was explored. The arenes, alcohols, and amines were demonstrated as the intermolecular trapping reagents for isocyanate ion and N-acyliminium ion from the Schmidt rearrangement, affording the corresponding products with moderate to excellent yields. Two 2-oxoindoles from the reaction were successfully converted into four natural alkaloids, namely, assoanine, anhydrolycorine, oxoassoanine, and anhydrolycorinone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b03018DOI Listing

Publication Analysis

Top Keywords

schmidt reaction
8
reaction ω-azido
8
ω-azido valeryl
8
valeryl chlorides
8
intermolecular trapping
8
chlorides intermolecular
4
trapping rearrangement
4
rearrangement ions
4
ions synthesis
4
synthesis assoanine
4

Similar Publications

Investigating the Reductive Phosphatization Reaction Pathway in the Synthesis of Transition Metal Phosphates: A Case Study on Titanium Phosphates.

Inorg Chem

January 2025

Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim 45470, Germany.

Reductive phosphatization is an original synthesis approach to the formation of transition metal phosphates (TMPs). The approach enables the synthesis of known TMPs, but also new compounds, especially with transition metals in a low-valent state. However, to exploit the enormous potential of this synthesis method, it is necessary to identify and characterize all of the potential intermediates and final synthesis products.

View Article and Find Full Text PDF

Pseudopterosin Biosynthesis: Unravelling a Decades Old Problem in Animal Specialized Metabolism.

J Am Chem Soc

January 2025

Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, United States.

Soft corals are prolific producers of terpenoids, such as pseudopterosins. The exact biosynthetic pathway of these anti-inflammatory diterpene glycosides has eluded the scientific community for decades. Using a forward genetic approach, we have identified, cloned, and expressed the key genes involved in pseudopterosin biosynthesis.

View Article and Find Full Text PDF

Surface Composition Impacts Selectivity of ZnTe Photocathodes in Photoelectrochemical CO Reduction Reaction.

ACS Energy Lett

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

Light-driven reduction of CO into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO reduction. However, such impact remains poorly understood.

View Article and Find Full Text PDF

Background: Prior research indicates that engaging in physical activity during chemotherapy can positively influence both physical and psychological parameters in individuals with hematological neoplasms. However, the most effective type, level, intensity, and frequency of exercise remains unclear.

Patients And Methods: We enrolled 53 patients to a clinical trial assessing a partly supervised hybrid training program including both strength and endurance components, commencing at onset of induction therapy (T0) for hematological malignancies, including AML (n = 29), ALL (n = 5), and NHL (n = 19).

View Article and Find Full Text PDF

Importance: There is a lack of long-term efficacy and safety data on hereditary transthyretin amyloidosis with polyneuropathy (hATTR-PN) and on RNA interference (RNAi) therapeutics in general. This study presents the longest-term data to date on patisiran for hATTR-PN.

Objective: To present the long-term efficacy and safety of patisiran in adults with hATTR-PN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!