The effects of intervessel pit characteristics on xylem hydraulic efficiency and photosynthesis in hemiepiphytic and non-hemiepiphytic Ficus species.

Physiol Plant

College of Forestry, Guangxi University, Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, Guangxi, 530004, China.

Published: December 2019

Xylem vulnerability to cavitation and hydraulic efficiency are directly linked to fine-scale bordered pit features in water-conducting cells of vascular plants. However, it is unclear how pit characteristics influence water transport and carbon economy in tropical species. The primary aim of this study was to evaluate functional implications of changes in pit characteristics for water relations and photosynthetic traits in tropical Ficus species with different growth forms (i.e. hemiepiphytic and non-hemiepiphytic) grown under common conditions. Intervessel pit characteristics were measured using scanning electron microscopy in five hemiepiphytic and five non-hemiepiphytic Ficus species to determine whether these traits were related to hydraulics, leaf photosynthesis, stomatal conductance and wood density. Ficus species varied greatly in intervessel pit structure, hydraulic conductivity and leaf physiology, and clear differences were observed between the two growth forms. The area and diameter of pit aperture were negatively correlated with sapwood-specific hydraulic conductivity, mass-based net assimilation rate, stomatal conductance (g ), intercellular CO concentration (C ) and the petiole vessel lumen diameters (D ), but positively correlated with wood density. Pit morphology was only negatively correlated with sapwood- and leaf-specific hydraulic conductivity and D . Pit density was positively correlated with g , C and D , but negatively with intrinsic leaf water-use efficiency. Pit and pit aperture shape were not significantly correlated with any of the physiological traits. These findings indicate a significant role of pit characteristics in xylem water transport, carbon assimilation and ecophysiological adaptation of Ficus species in tropical rain forests.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12923DOI Listing

Publication Analysis

Top Keywords

pit characteristics
20
ficus species
20
pit
12
intervessel pit
12
hemiepiphytic non-hemiepiphytic
12
hydraulic conductivity
12
characteristics xylem
8
hydraulic efficiency
8
non-hemiepiphytic ficus
8
water transport
8

Similar Publications

Methodological study on coal-based microbial modification of mineral black clay to overcome plant growth challenges on open-pit mine dumps in cold regions.

MethodsX

June 2025

CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China.

A critical challenge in ecological restoration of open-pit mine dumps in cold regions with limited topsoil resources is how to rapidly mitigate the plant growth-inhibitory effects of mineral black clay, thereby converting it into arable soil. Leveraging the high degradation capacity of coal seam-associated microorganisms on fossil carbon materials, combined with soil conditioning techniques, this study developed a microbial-based approach for modifying black clay. Seed germination experiments informed both laboratory and field trial designs.

View Article and Find Full Text PDF

Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.

View Article and Find Full Text PDF

is a rare member of the genus , primarily associated with human wound infections rather than respiratory diseases. The bacterium has been isolated from various clinical specimens, including ear inflammatory discharge, diabetic ulcers, and chronic wounds. The study aimed to characterize the genomes and antimicrobial resistance (AMR) profiles of obtained from the fecal samples of asymptomatic highland eyelash pit vipers ().

View Article and Find Full Text PDF

Under regional environmental conditions such as open-pit mines and construction sites, there are usually fixed GNSS measurement points. Around these fixed stations, there are also mobile GNSS measurement modules. These mobile measurement modules offer advantages such as low power consumption, low cost, and large data volume.

View Article and Find Full Text PDF

Contrasts in hydraulics underlie the divergent performances of Populus and native tree species in water-limited sandy land environments.

Physiol Plant

January 2025

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China.

Populus tree species are commonly used for creating shelter forests in vast areas of northern China, at least partially due to their fast growth. However, they are facing severe problems of decline and mortality caused by drought. In contrast, tree species native to water-limited environments usually have slow growth and are currently not commonly used in afforestation, while these species are gaining more attention in forestry for their greater resilience to drought.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!