Oxidative phosphorylation not only generates cellular energy via ATP synthesis, but also controls the intracellular oxygen level to minimize oxygen toxicity resulting from reactive oxygen species (ROS). These species include superoxide (O ), hydrogen peroxide (HO), and hydroxyl radical (•OH). While the rate of mitochondrial respiration determines the intracellular oxygen concentration, the relationship between oxygen concentration and ROS generation is not fully understood. We hypothesized that mitochondrial respiration controls intracellular oxygen concentration which in turn regulates ROS generation. To test this hypothesis, we used two prostate cancer cell lines; PC-3 cells, which have low mitochondrial genome (mtDNA) content and low mitochondrial respiratory activity, and LNCaP cells, which have high mtDNA content and high mitochondrial respiratory activity. PC-3 cells exhibited high mitochondrial oxygen concentration and generated more O as well as •OH when compared to LNCaP cells which showed low mitochondrial oxygen concentration and reduced levels of O and •OH. Exogenous hypoxic conditions (0.2% O) reduced mitochondrial oxygen concentration and the levels of ROS, whereas exogenous hyperoxic conditions (40% O) increased mitochondrial oxygen concentration and increased the levels of ROS. These results support the hypothesis that mitochondrial respiration regulates the intracellular oxygen concentration and in turn the generation of ROS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326587PMC

Publication Analysis

Top Keywords

oxygen concentration
36
intracellular oxygen
20
mitochondrial respiration
16
mitochondrial oxygen
16
oxygen
12
low mitochondrial
12
mitochondrial
11
concentration
9
respiration regulates
8
reactive oxygen
8

Similar Publications

The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.

View Article and Find Full Text PDF

Introduction: Compression of the nerve root by a lumbar disc herniation can cause radiating pain in the lower limbs, and the nerve root decompression treatment may leave some patients with motor dysfunction and reduced sensory function. Studies have shown that nerve growth factor (NGF) can promote nerve growth and repair, but high doses, long duration, and immune response have become bottlenecks of its clinical application.

Methods: To overcome this obstacle, we developed Prussian blue (PBs) nanoparticles with the bio-delivery function and antioxidant effects of nanoenzymes.

View Article and Find Full Text PDF

In the context of climate change, reducing the environmental impact of agriculture has become increasingly critical. To ensure sustainable food production, it is essential to adopt cultivation techniques that maximize resource efficiency, particularly in water and nutrient usage. The Nutrient Film Technique (NFT) is one such hydroponic system, designed to optimize water and nutrient use, making it a valuable tool for sustainable agriculture.

View Article and Find Full Text PDF

Petal senescence represents a crucial phase in the developmental continuum of flowers, ensuing tissue differentiation and petal maturation, yet anteceding seed formation and development. Instigation of petal senescence entails myriad of changes at the cytological, physiological and molecular dimensions, mirroring the quintessential characteristics of cell death. In the current investigation biochemical and molecular intricacies were scrutinized across various developmental stages (bud to the senescent phase).

View Article and Find Full Text PDF

Preparation, characterization, and protective effects of carbon dots against oxidative damage induced by LPS in IPEC-J2 cells.

Front Cell Infect Microbiol

January 2025

Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.

This study aimed to prepare carbon dots (GF-CDs) and examine their efficacy in mitigating oxidative stress and apoptosis in intestinal porcine epithelial cells from the jejunum (IPEC-J2 cells) induced by lipopolysaccharide (LPS). The GF-CDs were synthesized using a one-step hydrothermal method. The oxidative damage model of IPEC-J2 cells was induced through LPS treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!