A new species of arbuscular mycorrhizal fungi (Glomeromycota), , was isolated from forest soils in South Korea. This novel fungus was collected from the rhizosphere of and in forest and propagated with in pot. Morphological characteristics of spores of are rarely distinguished from , which is reported as one of the most abundant mycorrhizal species in Korea. However, molecular evidence of rDNA sequence using improved primers for glomeromycotan fungal identification strongly supported that is different from but also any other species belonging to the genus . This is the first novel glomeromycatan fungus introduced in South Korea, but it suggests that there is a high possibility for discovering new arbuscular mycorrhizal fungi considering the abundance of plant species and advanced phylogenetic analysis technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319463 | PMC |
http://dx.doi.org/10.1080/12298093.2018.1548805 | DOI Listing |
Ecol Lett
January 2025
Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.
Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Resources and Environment, Yunnan Agricultural University, Kunming, China.
Arbuscular mycorrhizal fungi (AMF) are commonly found in heavy metal-contaminated environments and form extraradical mycelium (ERM), but knowledge of their ecological functions is limited. In the present study, a soil column was filled with sterilized cadmium (Cd)-contaminated soil and contained an in-growth core for AMF-inoculated maize seedling growth. The in-growth core was static to maintain or rotated to disrupt ERM growth.
View Article and Find Full Text PDFEnviron Res
December 2024
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, P. R. China. Electronic address:
Molybdenum (Mo) acts as a crucial nutrient for plant development, yet excessive soil exposure can cause detrimental effects. Molybdenosis symptoms remain subtle in many plants, largely due to the safeguarding functions of soil organisms, the fundamental biological mechanisms lack clarity. In this study, we explored the potential mechanisms for amending Mo-exposed soils with soil microbe-arbuscular mycorrhizal fungi (AMF) and soil fauna, specifically earthworms, to enhance model plant-alfalfa growth resistance through soil nutrient turnover perspectives.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
Institute of Genetics and Developmental Biology, Key Laboratory of Seed Innovation, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China.
Background: Adventitious root (AR) formation is the key step for successful cutting propagation of tea plants (Camellia sinensis L.). Studies showed that arbuscular mycorrhizal fungus (AMF) can promote the rooting ability, and auxin pathway in basal stem of cuttings was involved in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!