Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.15687 | DOI Listing |
Plant Physiol Biochem
December 2024
Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China. Electronic address:
Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv.
View Article and Find Full Text PDFPlant Physiol
December 2024
State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
Arbuscular mycorrhizal fungi (AMF) can transfer inorganic nitrogen (N) from the soil to host plants to cope with drought stress, with arginine synthesis and NH4+ transport being pivotal processes. However, the regulatory mechanism underlying these processes remains unclear. Here, we found that drought stress upregulated expression of genes involved in the N transfer pathway and putrescine and glutathione synthesis in the mycorrhizal structures of Rhizophagus irregularis within alfalfa (Medicago sativa) roots, i.
View Article and Find Full Text PDFMycorrhiza
December 2024
Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.
Plant partnerships with arbuscular mycorrhizal fungi (AMF) improve plant resilience to stress by increasing the plant's access to and uptake of essential nutrients and water, as well as regulating the plant's stress response. The magnitude and direction of AMF effects during the relationship depend on multiple factors including plant identity and environmental context. To investigate how AMF influence plant responses to environmental stresses, we assessed the effects of drought and salinity on growth, final biomass, and reproduction of nine alfalfa (Medicago sativa) cultivars inoculated with Rhizophagus irregularis or grown alone.
View Article and Find Full Text PDFMycorrhiza
December 2024
African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco.
Arbuscular mycorrhizal fungi (AMF) are the most widespread plant symbionts associated with plant roots, and theyperform numerous functions that contribute to plants' health and physiology. However, there are many knowledge gaps in how the interactions between AMF and root mycobiomes influence the performance of the host plants. To this end, we inoculated a local chickpea cultivar grown in agricultural soil under semi-controlled conditions with Rhizophagus irregularis.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Plant Protection, Faculty of Agriculture, Vali-E- Asr University of Rafsanjan, Rafsanjan, Iran.
Background: Arbuscular mycorrhizal fungi (AMF) can regulate metal(loid) tolerance in plants and their capacity for phytoremediation. These effects can vary depending on the host plant and the AMF species. The impact of different AMF species on the ability of safflower (Carthamus tinctorius L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!