Solvent-tolerant bacteria represent an interesting option to deal with the substrate and product toxicity in bioprocesses. Recently, constitutive solvent tolerance was achieved for Pseudomonas taiwanensis VLB120 via knockout of the regulator TtgV, making tedious adaptation unnecessary. Remarkably, ttgV knockout increased styrene epoxidation activities of P. taiwanensis VLB120Δ C. With the aim to characterize and exploit the biocatalytic potential of P. taiwanensis VLB120Δ C and VLB120Δ CΔ ttgV, we investigated and correlated growth physiology, native styrene monooxygenase (StyAB) gene expression, whole-cell bioconversion kinetics, and epoxidation performance. Substrate inhibition kinetics was identified but was attenuated in two-liquid phase bioreactor setups. StyA fusion to the enhanced green fluorescent protein enabled precise enzyme level monitoring without affecting epoxidation activity. Glucose limitation compromised styAB expression and specific activities (30-40 U/g for both strains), whereas unlimited batch cultivation enabled specific activities up to 180 U/g for VLB120Δ CΔ ttgV strains, which is unrivaled for bioreactor-based whole-cell oxygenase biocatalysis. These extraordinarily high specific activities of constitutively solvent-tolerant P. taiwanensis VLB120∆ C∆ ttgV could be attributed to its high metabolic capacity, which also enabled high expression levels. This, together with the high product yields on glucose and biomass obtained qualifies the VLB120∆ ttgV strain as a highly attractive tool for the development of ecoefficient oxyfunctionalization processes and redox biocatalysis in general.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26924DOI Listing

Publication Analysis

Top Keywords

specific activities
12
constitutively solvent-tolerant
8
pseudomonas taiwanensis
8
taiwanensis vlb120∆
8
vlb120∆ c∆
8
c∆ ttgv
8
epoxidation activities
8
taiwanensis vlb120Δ
8
vlb120Δ cΔ
8
cΔ ttgv
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!