Background: is the most common infectious cause of posterior uveitis worldwide. Two multicopy targets (B1 and Rep529) are commonly used in PCR assays, but studies evaluating these targets in ocular fluid samples are limited. Herein, we determine the analytical characteristics of a single-reaction, internally controlled, dual-target, real-time PCR and evaluate the clinical performance of this assay in intraocular fluid samples obtained at a reference ophthalmologic centre in the USA.

Methods: Lower limits of detection for the B1 and Rep529 components of the dual-target assay were determined using serial dilutions of cultured strain Z185. The dual-target assay was then used to test 148 archived intraocular samples (132 vitreous,16 aqueous humour) collected at the Francis I. Proctor Foundation between January 2010 and December 2015 for testing by a nested, conventional PCR targeting the B1 gene.

Results: The 95% lower limits of detection for the dual-target assay was determined to be 1.05 tachyzoites/mL for B1 and 0.83 tachyzoites/mL for Rep529. Using archived clinical intraocular specimens, the dual-target assay demonstrated 97.2% positive per cent agreement (n=35/36; 95% CI 83.7% to 99.9%) and 99.1% negative per cent agreement (n=111/112; 95% CI 94.4% to 100%) compared with the nested, conventional B1 PCR.

Conclusion: This single-reaction, internally controlled, dual-target (B1, Rep529) real-time PCR for the detection of DNA in intraocular specimens demonstrated excellent agreement with nested, conventional, B1 PCR. The dual-target design may ensure detection when variation is present in one of two target regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691874PMC
http://dx.doi.org/10.1136/bjophthalmol-2018-313064DOI Listing

Publication Analysis

Top Keywords

dual-target assay
16
real-time pcr
12
nested conventional
12
dual-target
8
dual-target real-time
8
fluid samples
8
single-reaction internally
8
internally controlled
8
controlled dual-target
8
lower limits
8

Similar Publications

generation of dual-target compounds using artificial intelligence.

iScience

January 2025

Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.

Drugs that interact with multiple therapeutic targets are potential high-value products in polypharmacology-based drug discovery, but the rational design remains a formidable challenge. Here, we present artificial intelligence (AI)-based methods to design the chemical structures of compounds that interact with multiple therapeutic target proteins. The molecular structure generation is performed by a fragment-based approach using a genetic algorithm with chemical substructures and a deep learning approach using reinforcement learning with stochastic policy gradients in the framework of generative adversarial networks.

View Article and Find Full Text PDF

A portable optical detection system for rapid quantification of two rheumatoid arthritis biomarkers.

Anal Chim Acta

January 2025

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint damage and progressive destruction of adjacent cartilage and bones. Quick and accurate detection of rheumatoid factors (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP) in serum is effective in diagnosing RA and preventing its progression. However, current methods for detecting these two biomarkers are costly, time-consuming, labor-intensive, and require specialized equipment.

View Article and Find Full Text PDF

Dual-target magneto-immunoassay with bifunctional nanohybrids for breast cancer exosome detection.

Talanta

January 2025

Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea; School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea. Electronic address:

Exosomes, crucial for intercellular communication, hold potential as noninvasive liquid biopsy biomarkers especially in early breast cancer detection benefitted from the distinctive "cancer signature" on their membrane surface. Yet, the present methodologies of exosomes for breast cancer detection have involved the implementation of only a single member from the tetraspanin protein group as a biomarker. Moreso, due to the high concentration of exosomes in complex body fluids, there is a compelling need to measure a small concentration of cancer-derived exosomes with a low background noise signal.

View Article and Find Full Text PDF

BLV-CoCoMo Dual qPCR Assay Targeting LTR Region for Quantifying Bovine Leukemia Virus: Comparison with Multiplex Real-Time qPCR Assay Targeting Region.

Pathogens

December 2024

Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

The proviral load (PVL) of the bovine leukemia virus (BLV) is a useful index for estimating disease progression and transmission risk. Real-time quantitative PCR techniques are widely used for PVL quantification. We previously developed a dual-target detection method, the "Liquid Dual-CoCoMo assay", that uses the coordination of common motif (CoCoMo) degenerate primers.

View Article and Find Full Text PDF

Structure-based discovery of dual-target inhibitors of the helicase from bagaza virus.

Int J Biol Macromol

January 2025

Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China. Electronic address:

Bagaza virus (BAGV) is a mosquito-borne flavivirus and has caused significant avian death in many regions, and also garnered recognition as a significant human pathogen causing diseases like encephalitis. The genome of BAGV encodes ten proteins including three structural proteins and seven nonstructural proteins. The C-terminus of the BAGV NS3 helicase serves as a helicase during BAGV replication, aiding in ATP hydrolysis and unwinding of double-stranded RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!