Marine phytoplankton experience a wide range of nutrient and light conditions in nature and respond to these conditions through changes in growth rate, chlorophyll concentration, and other physiological properties. Chlorophyll fluorescence is a non-invasive and efficient tool for characterizing changes in these physiological properties. In particular, the introduction of fast repetition rate fluorometry (FRRf) into studies of phytoplankton physiology has enabled detailed studies of photosynthetic components and kinetics. One property retrieved with an FRRf is the 'single-turnover' maximum fluorescence (Fm) when the primary electron acceptor, Qa, is reduced but the plastoquinone (PQ) pool is oxidized. A second retrieved property is the 'multiple-turnover' fluorescence (F) when both Qa and PQ are reduced. Here, variations in Fm and F were measured in the green alga Dunaliella tertiolecta grown under nitrate-limited, light-limited, and replete conditions. The ratio of Fm to F (ST/MT) showed a consistent relationship with cellular chlorophyll in D. tertiolecta across all growth conditions. However, the ST/MT ratio decreased with growth rate under nitrate-limited conditions but increased with growth rate under light-limited conditions. In addition, cells from light-limited conditions showed a high accumulation of Qb-nonreducing centers, while cells from nitrate-limited conditions showed little to none. We propose that these findings reflect differences in the reduction and oxidation rates of plastoquinone due to the unique impacts of light and nitrate limitation on the stoichiometry of light-harvesting components and downstream electron acceptors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-018-00612-7DOI Listing

Publication Analysis

Top Keywords

growth rate
16
cellular chlorophyll
8
green alga
8
alga dunaliella
8
dunaliella tertiolecta
8
conditions
8
physiological properties
8
nitrate-limited conditions
8
light-limited conditions
8
growth
5

Similar Publications

Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Plant Physiol Biochem

January 2025

Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

The antifungal drugs of the echinocandin family show high efficacy against Aspergillus fumigatus. However, their paradoxical effect, which restores fungal growth at high drug concentrations, and the emergence of resistant strains necessitate improvements. We identified 13 fluoroquinolone compounds from a chemical library containing 10,000 compounds that potentiate the antifungal activity of caspofungin.

View Article and Find Full Text PDF

The present work reports a clear and improved hydrothermal methodology for the synthesis of MoSe nanoflowers (MNFs) at 210 °C. To observe the effect of temperature on the fascinating properties, the process temperature was modified by ±10 °C. The as-prepared MNFs were found to consist of 2D nanosheets, which assembled into a 3D flower-like hierarchical morphology van der Waals forces.

View Article and Find Full Text PDF

Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.

View Article and Find Full Text PDF

Effects of dietary Lactococcus lactis Z-2 on growth, host health and resistance to Aeromonas hydrophila in juvenile common carp (Cyprinus carpio L.).

J Sci Food Agric

January 2025

College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China.

Background: Lactococcus lactis Z-2 was previously isolated from common carp intestine. In order to investigate the effects of optimal dose of L. lactis Z-2 on growth, host health and disease resistance to Aeromonas hydrophila in common carp, five experimental diets, including without (CK and CK+ groups) or with 5 × 10 (group A), 5 × 10 (group B) and 5 × 10 CFU g (group C) L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!