The potential value of succinylated soy protein (SPS) as a wall material for the encapsulation of ibuprofen (IBU), a model hydrophobic drug, by spray-drying was investigated. A succinylation rate of 93% was obtained for soy protein isolate, with a molar ratio of 1/1.5 (NH/succinic anhydride). The solubility profile at 37°C showed that this chemical modification decreased the solubility of the protein below its isoelectric point, whereas solubility increased in alkaline conditions. Various SPS/IBU ratios (90/10, 80/20, and 60/40) were studied and compared with the same ratio of soy protein isolate (SPI/IBU). High encapsulation efficiency was achieved (91-95%). Microparticles were spherical and between 4 and 8 μm in diameter. The spray-drying of protein/IBU solutions appeared to be beneficial, as it resulted in an amorphous solid dispersion of IBU within the microparticles, coupled with an increase in the thermal stability of IBU. In vitro release was evaluated in acidic (pH 1.2 in the presence of pepsin) and neutral (pH 6.8) conditions similar to those in the gastrointestinal (GI) tract. IBU was released significantly more slowly at pH 1.2, for both proteins. However, this slowing was particularly marked for SPS, for which rapid (within 2 h) and complete release was observed at pH 6.8. These results validate the hypothesis that SPS is suitable for use as a coating material for hydrophobic active pharmaceutical ingredients (APIs) due to its pH sensitivity, which should delay IBU release in the gastrointestinal tract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-018-1250-6 | DOI Listing |
Plants (Basel)
January 2025
Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av. 10, 630090 Novosibirsk, Russia.
Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.
View Article and Find Full Text PDFNutrients
January 2025
National Center for Women and Children's Health, National Health Commission of the People's Republic of China, Beijing 100000, China.
Objective: To investigate the relationship between protein-rich foods, various nutritional supplements, and age of natural menopause and its symptoms.
Methods: This study was a large-scale cross-sectional survey. A multi-stage stratified random sampling method was used to select a sample of 52,347 residents aged 35-60 years from 26 districts/counties across 13 cities in 12 provinces in China.
Polymers (Basel)
January 2025
Department of Land, Environment, Agriculture and Forestry, University of Padua, Viale dell'Università 16, 35020 Padua, Italy.
Tannin-based foams have gained attention as a potential bio-based alternative to conventional synthetic foams. Traditionally, namely condensed tannins (CT) have been used, leaving the potential of hydrolysable tannins (HT) largely unexplored. This study compared the performance of chestnut (HT) and quebracho (CT) in tannin-protein-based foams at different tannin ratios.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA.
Breast cancer treatment has advanced significantly, particularly for estrogen receptor-positive (ER+) tumors. Tamoxifen, an estrogen antagonist, is widely used; however, approximately 40% of patients develop resistance. Recent studies indicate that microRNAs, especially miR-155, play a critical role in this resistance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!