Background: Neuromyelitis optica spectrum disorder (NMOSD) is a B-cell-mediated disease with autoimmunity towards the astrocyte water channel aquaporin-4 (AQP-4) in the central nervous system.
Objective: To assess the long-term safety and efficacy in NMOSD patients receiving maintenance therapy with B-cell-depleting agent rituximab for more than 2 years.
Method: NMOSD patients were included prospectively from 2014 to 2018 and received continuous cycles of rituximab infusions biannually. Incidence of adverse events (AE), serious AEs (SAE), and infusion-related AEs were evaluated through monthly phone calls and neurological examination every 4 months.
Results: A total of 44 NMOSD patients were included, of those 30 were treatment naive (68%). The mean age was 37.2 years with 79.5% females. With overall observation period of 31.6 ± 7.3 months (24-48 months), tolerability was assessed as satisfactory in most cases. We observed infusion reactions (mostly mild) in 31.8% of patients and 31.8% never experienced any AEs after a mean 5.1 cycles of rituximab therapy. Rituximab was also beneficial in terms of improvement in relapse rate (from 0.26 ± 0.54 to 0, P = 0.003) and Expanded Disability Status Scale (from 4.1 ± 1.8 to 3.1 ± 1.8, P < 0.001). Stratification according to AQP4-IgG serostatus showed no difference between groups.
Conclusion: Rituximab treatment is well tolerated, safe, and efficacious with a minor risk of mild infusion reactions for NMOSD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00415-019-09180-9 | DOI Listing |
Ocul Immunol Inflamm
January 2025
Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.
A 45-year-old healthy African-American man experienced 2 months of right-eye soreness followed by acute onset of right painful vision loss with binocular, oblique diplopia. Visual acuity was count fingers OD and 20/20 OS. He had a partial, right, pupil-involving cranial nerve III palsy with a right relative afferent pupillary defect and optic disc edema with tortuous vessels.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.
Purpose: Posterior fossa ring-enhancing lesions (PFREL) in the adult immunocompetent hosts pose a diagnostic challenge. We aimed to evaluate the spectrum of PFREL etiologies and propose a diagnostic algorithm.
Methods: This study involved a retrospective analysis of PFREL cases from our institution (January 2023 to April 2024) and a systematic literature review conducted using Embase and PubMed databases following the PRISMA 2020 guidelines.
Front Immunol
January 2025
Department of Geriatric Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.
Objective: This study aims to delineate the clinical features underlying the concurrent disease of neuromyelitis optica spectrum disorder (NMOSD) and myasthenia gravis (MG), and to identify efficacious therapeutic strategies.
Background: NMOSD and MG are uncommon autoimmune diseases that infrequently co-exist. Despite previous reports, a consensus on treating NMOSD concurrent with MG is lacking.
Front Immunol
January 2025
Genentech, Inc., South San Francisco, CA, United States.
Objectives: This case series describes adults with aquaporin 4 immunoglobulin G-seropositive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) who switched treatment from eculizumab to satralizumab.
Methods: Case information for patients with AQP4-IgG+ NMOSD who received satralizumab for ≥6 months was obtained from US healthcare providers from April 2022 to January 2024. Patient characteristics, examination findings, diagnostic test results, treatment response, and adverse events were recorded.
eNeurologicalSci
March 2025
Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
Fluid biomarkers such as Glial Fibrillary Acidic Protein (GFAP) and Neurofilament Light (NfL) play important roles in the diagnosis, monitoring, and evaluation of therapeutic responses in conditions such as Multiple Sclerosis (MS) and Aquaporin-4 Neuromyelitis Optica Spectrum Disorder (AQP4-NMOSD). These biomarkers offer key insights into the underlying pathophysiological mechanisms of these diseases, enabling effective follow-up and personalized treatment approaches, which are essential for improving patient outcomes. Herein, we synthesize the structural attributes, functional roles, and clinical significance of GFAP and NfL in the context of MS and AQP4-NMOSD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!