Deformation mechanisms of cold drawn and electropolished nickel microwires are studied by performing in-situ monotonous and cyclic tensile tests under synchrotron radiation. X-ray diffraction tests allow probing elastic strains in the different grain families and establishing a link with the deformation mechanisms taking place within the microwires. The measurements were carried out on several microwires with diameters ranging from as-drawn 100 µm down to 40 µm thinned down by electropolishing. The as-drawn wires exhibit a core-shell microstructure with <111> fiber texture dominant in core and heterogeneous dual fiber texture <111> and <100> in the shell. Reduction of specimen size by electropolishing results in a higher yield stress and tensile strength along with reduced ductility. In-situ XRD analysis revealed that these differences are linked to the global variation in microstructure induced by shell removal with electropolishing, which in turn affects the load sharing abilities of grain families. This study thus proposes a new way to increase ductility and retain strength in nickel microwires across different diameters by tuning the microstructure architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329826 | PMC |
http://dx.doi.org/10.1038/s41598-018-36472-3 | DOI Listing |
Hum Brain Mapp
January 2025
Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.
A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.
View Article and Find Full Text PDFLangmuir
January 2025
College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
Based on the bidirectional electromigration (BIEM) technique, a corrosion inhibitor solution was prepared by mixing 1 mol/L triethylene tetramine with deionized water. The effects of current density, charging time, and corrosion inhibitor on critical current density and hydrogen content of rebar were investigated. Subsequently, the hydrogen embrittlement risk of rebar was further characterized by mechanical property tests.
View Article and Find Full Text PDFUnlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, School of Chemical Engineering and Technology, Yaguan Road #135, Jinnan District, Tianjin 300354, P. R. China, CHINA.
In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S-methylbenzylammonium (R/S-MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.
View Article and Find Full Text PDFActa Biomater
January 2025
The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.
Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!