Background: Human mesenchymal stem cells are a strong candidate for cell therapies owing to their regenerative potential, paracrine regulatory effects, and immunomodulatory activity. Yet, their scarcity, limited expansion potential, and age-associated functional decline restrict the ability to consistently manufacture large numbers of safe and therapeutically effective mesenchymal stem cells for routine clinical applications. To overcome these limitations and advance stem cell treatments using mesenchymal stem cells, researchers have recently derived mesenchymal progenitors from human-induced pluripotent stem cells. Human-induced pluripotent stem cell-derived progenitors resemble adult mesenchymal stem cells in morphology, global gene expression, surface antigen profile, and multi-differentiation potential, but unlike adult mesenchymal stem cells, it can be produced in large numbers for every patient. For therapeutic applications, however, human-induced pluripotent stem cell-derived progenitors must be produced without animal-derived components (xeno-free) and in accordance with Good Manufacturing Practice guidelines.
Methods: In the present study we investigate the effects of expanding mesodermal progenitor cells derived from two human-induced pluripotent stem cell lines in xeno-free medium supplemented with human platelet lysates and in a commercial high-performance Good Manufacturing Practice-compatible medium (Unison Medium).
Results: The results show that long-term culture in xeno-free and Good Manufacturing Practice-compatible media somewhat affects the morphology, expansion potential, gene expression, and cytokine profile of human-induced pluripotent stem cell-derived progenitors but supports cell viability and maintenance of a mesenchymal phenotype equally well as medium supplemented with fetal bovine serum.
Conclusions: The findings support the potential to manufacture large numbers of clinical-grade human-induced pluripotent stem cell-derived mesenchymal progenitors for applications in personalized regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329105 | PMC |
http://dx.doi.org/10.1186/s13287-018-1119-3 | DOI Listing |
J Clin Invest
January 2025
Department of Biomedical Engineering, Columbia University, New York, New York, USA.
Loss of Bcl2-associated athanogene 3 (BAG3) is associated with dilated cardiomyopathy (DCM). BAG3 regulates sarcomere protein turnover in cardiomyocytes; however, the function of BAG3 in other cardiac cell types is understudied. In this study, we used an isogenic pair of BAG3-knockout and wild-type human induced pluripotent stem cells (hiPSCs) to interrogate the role of BAG3 in hiPSC-derived cardiac fibroblasts (CFs).
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.
Multiple sclerosis (MS), a debilitating autoimmune disorder targeting the central nervous system (CNS), is marked by relentless demyelination and inflammation. Clinically, it presents in three distinct forms: relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS). While disease-modifying therapies (DMTs) offer some relief to people with RRMS, treatment options for progressive MS (pMS) remain frustratingly inadequate.
View Article and Find Full Text PDFStem Cell Res
December 2024
Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Livia Shangyu Wan Chair Professor of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan. Electronic address:
Polycystic ovary syndrome (PCOS) is a common endocrine disorder related to multifactors and genetic polymorphisms. Here, we derived an induced pluripotent stem cell (hiPSC) line NTUHi006-A from a phenotype A (full-blown) PCOS patients with clinical hyperandrogenism, chronic anovulation, and polycystic ovarian morphology on ultrasonography. NTUHi006-A showed stemness, pluripotency and stem cell-like morphology.
View Article and Find Full Text PDFStem Cell Res
December 2024
Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain. Electronic address:
Retinitis Pigmentosa type 25 (RP25) is a form of inherited retinal dystrophy characterized by a progressive loss of rod photoreceptors, subsequent degeneration of cone photoreceptors, and eventually, the retinal pigment epithelium. Caused by mutations in the EYS gene, it is believed to be critical for the structural and functional integrity of the retina. Using a non-integrative RNA reprogramming method, we have generated human induced pluripotent stem cell (hiPSC) lines from RP25 patient and from carriers but asymptomatic daughters.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
December 2024
Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America.
Immune checkpoint inhibitor-associated myocarditis is the most lethal side effect of immune checkpoint blockade. Myocarditis leads to persistently increased mortality and lacks effective treatments. The development of patient-relevant disease models may enable disease prediction, increased understanding of disease pathophysiology, and the development of effective treatment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!