Degeneration of saccular hair cells caused by MITF gene mutation.

Neural Dev

Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijng, China.

Published: January 2019

Background: Waardenburg syndrome (WS) is the consequence of an inherited autosomal dominant mutation which causes the early degeneration of intermediate cells of cochlear stria vascularis (SV) and profound hearing loss. Patients with WS may also experience primary vestibular symptoms. Most of the current WS studies did not discuss the relationship between WS and abnormal vestibular function. Our study found that a spontaneous mutant pig showed profound hearing loss and depigmentation. MITF-M, a common gene mutation causes type WS which affect the development of the intermediate cell of SV, was then identified for animal modeling.

Results: In this study, the degeneration of vestibular hair cells was found in pigs with MITF-M. The morphology of hair cells in vestibular organs of pigs was examined using electron microscopy from embryonic day E70 to postnatal two weeks. Significant hair cell loss in the mutant saccule was found in this study through E95 to P14. Conversely, there was no hair cell loss in either utricle or semi-circular canals.

Conclusions: Our study suggested that MITF-M gene mutation only affects hair cells of the saccule, but has no effect on other vestibular organs. The study also indicated that the survival of cochlear and saccular hair cells was dependent on the potassium release from the cochlear SV, but hair cells of the utricle and semi-circular canals were independent on SV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330439PMC
http://dx.doi.org/10.1186/s13064-019-0126-0DOI Listing

Publication Analysis

Top Keywords

hair cells
24
gene mutation
12
hair
8
saccular hair
8
profound hearing
8
hearing loss
8
vestibular organs
8
hair cell
8
cell loss
8
utricle semi-circular
8

Similar Publications

The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).

View Article and Find Full Text PDF

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

Deciphering compromised speech-in-noise intelligibility in older listeners: the role of cochlear synaptopathy.

eNeuro

January 2025

Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium

Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.

View Article and Find Full Text PDF

Tissue engineering utilizing hydrogel scaffolds in combination with exogenous stem cells holds significant potential for promoting wound regeneration. However, the microenvironment provided by existing skin tissue engineering scaffold materials is often inadequate. Herein, we demonstrate an enzyme-crosslinked hyaluronic acid hydrogel to provide a growth microenvironment for exogenous bone marrow mesenchymal stem cells and promote acute wound healing.

View Article and Find Full Text PDF

Skin, as the body's largest organ, acts as the primary defense mechanism against infection and injury. The maintenance of skin health heavily relies on the regulation of epidermal stem cells, crucial for ensuring epidermal homeostasis, hair regeneration, and the repair of epidermal injuries. Recent studies have placed a growing emphasis on G protein-coupled receptor (GPCR) in the context of understanding epidermal stem cells, uncovering its significant role in determining their fate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!