Genomic characterisation of the new Dickeya fangzhongdai species regrouping plant pathogens and environmental isolates.

BMC Genomics

Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universités, UPMC Univ Paris 06, Diderot Univ Paris 07, UPEC Univ Paris 12, CNRS, INRA, IRD, 4 Place Jussieu, 75005, Paris, France.

Published: January 2019

Background: The Dickeya genus is part of the Pectobacteriaceae family that is included in the newly described enterobacterales order. It comprises a group of aggressive soft rot pathogens with wide geographic distribution and host range. Among them, the new Dickeya fangzhongdai species groups causative agents of maceration-associated diseases that impact a wide variety of crops and ornamentals. It affects mainly monocot plants, but D. fangzhongdai strains have also been isolated from pear trees and water sources. Here, we analysed which genetic novelty exists in this new species, what are the D. fangzhongdai-specific traits and what is the intra-specific diversity.

Results: The genomes of eight D. fangzhongdai strains isolated from diverse environments were compared to 31 genomes of strains belonging to other Dickeya species. The D. fangzhongdai core genome regroups approximately 3500 common genes, including most genes that encode virulence factors and regulators characterised in the D. dadantii 3937 model strain. Only 38 genes are present in D. fangzhongdai and absent in all other Dickeyas. One of them encodes a pectate lyase of the PL10 family of polysaccharide lyases that is found only in a few bacteria from the plant environment, soil or human gut. Other D. fangzhongdai-specific genes with a known or predicted function are involved in regulation or metabolism. The intra-species diversity analysis revealed that seven of the studied D. fangzhongdai strains were grouped into two distinct clades. Each clade possesses a pool of 100-150 genes that are shared by the clade members, but absent from the other D. fangzhongdai strains and several of these genes are clustered into genomic regions. At the strain level, diversity resides mainly in the arsenal of T5SS- and T6SS-related toxin-antitoxin systems and in secondary metabolite biogenesis pathways.

Conclusion: This study identified the genome-specific traits of the new D. fangzhongdai species and highlighted the intra-species diversity of this species. This diversity encompasses secondary metabolites biosynthetic pathways and toxins or the repertoire of genes of extrachromosomal origin. We however didn't find any relationship between gene content and phenotypic differences or sharing of environmental habitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329079PMC
http://dx.doi.org/10.1186/s12864-018-5332-3DOI Listing

Publication Analysis

Top Keywords

fangzhongdai strains
16
fangzhongdai species
12
fangzhongdai
9
dickeya fangzhongdai
8
strains isolated
8
intra-species diversity
8
genes
7
species
6
strains
5
genomic characterisation
4

Similar Publications

First Report of Causing Soft Rot in Bananas in Ecuador.

Plant Dis

December 2024

Universidad de las Fuerzas Armadas, Ciencias de la Vida y la Agricultura, Sangolqui, Pichincha, Ecuador;

Bananas are Ecuador's second largest non-oil export product, and the quality of its fruit has established a strong presence in international markets. One-third of the world's banana exports originate from Ecuador. The Ecuadorian banana market is diversified, exporting fruit to various countries worldwide, making it a vital socio-economic and food security support for the country.

View Article and Find Full Text PDF

Bacterial soft rot caused by coinfection with spp. and spp. in hosts can cause successive changes in fields, and it is difficult to prevent the spread of and control the infection.

View Article and Find Full Text PDF

Pseudomonas chlororaphis L5 and Enterobacter asburiae L95 biocontrol Dickeya soft rot diseases by quenching virulence factor modulating quorum sensing signal.

Microb Biotechnol

November 2023

National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China.

Virulence factor modulating (VFM) is a quorum sensing (QS) signal shared by and specific to Dickeya bacteria, regulating the production of plant cell wall degrading enzymes (PCWDEs) and virulence of Dickeya. High polarity and trace of VFM signal increase the difficulty of signal separation and structure identification, and thus limit the development of quorum quenching strategy to biocontrol bacterial soft rot diseases caused by Dickeya. In order to high-throughput screen VFM quenching bacteria, a vfmE-gfp biosensor VR2 (VFM Reporter) sensitive to VFM signal was first constructed.

View Article and Find Full Text PDF

Dickeya fangzhongdai, a bacterial pathogen of taro (Colocasia esculenta), onion (Allium sp.), and several species in the orchid family (Orchidaceae) causes soft rot and bleeding canker diseases. No field-deployable diagnostic tool is available for specific detection of this pathogen in different plant tissues.

View Article and Find Full Text PDF

This study was designed to identify the pathogen causing soft rot of Pinellia ternata in Qianjiang of Hubei province and screen out the effective bactericides, so as to provide a theoretical basis for the control of soft rot of P. ternata. In this study, the pathogen was identified based on molecular biology and physiological biochemistry, followed by the detection of pathogenicity and pathogenicity spectrum via plant tissue inoculation in vitro and the indoor toxicity determination using the inhibition zone method to screen out bactericide with good antibacterial effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!