Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Loss of selective muscle activation after stroke contributes to impaired arm function, is difficult to quantify and is not systematically assessed yet. The aim of this study was to describe and validate a technique for quantification of selective muscle activation of wrist flexor and extensor muscles in a cohort of post-stroke patients. Patterns of selective muscle activation were compared to healthy volunteers and test-retest reliability was assessed. Activation Ratios describe selective activation of a muscle during its expected optimal activation as agonist and antagonist. Activation Ratios were calculated from electromyography signals during an isometric maximal torque task in 31 post-stroke patients and 14 healthy volunteers. Participants with insufficient voluntary muscle activation (maximal electromyography signal <3SD higher than baseline) were excluded. Activation Ratios at the wrist were reliably quantified (Intraclass correlation coefficients 0.77-0.78). Activation Ratios were significantly lower in post-stroke patients compared to healthy participants ( < 0.05). Activation Ratios allow for muscle-specific quantification of selective muscle activation at the wrist in post-stroke patients. Loss of selective muscle activation may be a relevant determinant in assigning and evaluating therapy to improve functional outcome.Implications for RehabilitationLoss of selective muscle activation after stroke contributes to impaired arm function, is difficult to quantify and is not systematically assessed yet.The ability for selective muscle activation is a relevant determinant in assigning and evaluating therapy to improve functional outcome, e.g., botulinum toxin.Activation Ratios allow for reliable and muscle-specific quantification of selective muscle activation in post-stroke patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09638288.2018.1509241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!