is an opportunistic pathogen that has emerged as a major cause of nosocomial infections worldwide. Many clinical strains are indeed resistant to last resort antibiotics and there is consequently a reawakening of interest in exploiting virulent phages to combat them. However, little is still known about phage receptors and phage resistance mechanisms in enterococci. We made use of a prophageless derivative of the well-known clinical strain V583 to isolate a virulent phage belonging to the subfamily and to the P68 genus that we named Idefix. Interestingly, most isolates of tested-including V583-were resistant to this phage and we investigated more deeply into phage resistance mechanisms. We found that V583 prophage 6 was particularly efficient in resisting Idefix infection thanks to a new abortive infection (Abi) mechanism, which we designated Abiα. It corresponded to the Pfam domain family with unknown function DUF4393 and conferred a typical Abi phenotype by causing a premature lysis of infected . The gene is widespread among prophages of enterococci and other Gram-positive bacteria. Furthermore, we identified two genes involved in the synthesis of the side chains of the surface rhamnopolysaccharide that are important for Idefix adsorption. Interestingly, mutants in these genes arose at a frequency of ~10 resistant mutants per generation, conferring a supplemental bacterial line of defense against Idefix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356687PMC
http://dx.doi.org/10.3390/v11010048DOI Listing

Publication Analysis

Top Keywords

phage resistance
8
resistance mechanisms
8
phage
5
countermeasures defeat
4
defeat virulent
4
virulent bacteriophage
4
bacteriophage opportunistic
4
opportunistic pathogen
4
pathogen emerged
4
emerged major
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!